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Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analyt-
ical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on
RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more
variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingu-
late cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or
gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-
dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex
into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation
was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that
the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed
an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal
cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) inter-
action, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concertwith
increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we re-
vealed that our approach improves network detection in both groups, and that the ability to detect group differ-
ences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find
disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in
attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial
for establishing robust and reproducible connectivity-based biomarkers in psychiatric disorders.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Spontaneous, or resting state (RS), fluctuations in the blood oxygen-
ation level-dependent (BOLD) signal are increasingly used as a tool to
investigate brain connectivity and generate biomarkers of psychiatric
disorders (Alaerts et al., 2014; Di Martino et al., 2014; Kelly et al.,
2012). However, the unconstrained nature of spontaneous fluctuations
means that they are susceptible to non-neural factors such as head
movement, respiration, and MRI artifacts, leading to a moderate test-
retest reliability (Shehzad et al., 2009; Thomason et al., 2011; Zuo
et al., 2010) and reducing the utility of RS-fMRI as a diagnostic tool.
For example, evidence from RS-fMRI provided great support for the de-
velopmental disconnection hypothesis (Courchesne and Pierce, 2005),
which posited that individuals with ASD show decreased long-range
ters).

. This is an open access article under
neural connectivity in parallel with increased short-range connectivity.
However, there is now some debate about whether these differences in
connectivity are actually due to differences in small head movements
(Deen and Pelphrey, 2012; Koldewyn et al., 2014; Tyszka et al., 2014).

There has been an increasing effort to quantify the impact of various
pre-processing steps and provide recommendations (Bright and
Murphy, 2015; Power et al., 2012; Shirer et al., 2015; Yan et al., 2013),
however, one issue that has not been discussed as widely is the genera-
tion of regions of interest (seeds) in RS-fMRI. Smith et al. (2011) showed
that the incorrect selection of a seed region had the greatest potential to
reducenetwork detection. Specifically, itwasdemonstrated thatwhen a
seed crossed a functional boundary by as little as 20% the sensitivity of
detecting connections dropped dramatically (b20%detection sensitivity
regardless of the method). Given that Hahamy et al. (2015) recently
demonstrated that individuals with ASD possess more variable spatial
representations of resting state networks, we suggest that some RS-
fMRI differences in ASD may not be due to reduced connectivity but
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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variability in spatial representations of networks which traditional
seed-based approaches are not sensitive enough to detect.

RS-fMRI is increasingly being used as a tool to partition gross mor-
phological regions into functional sub-units based on common temporal
dynamics (Eickhoff et al., 2015; Gordon et al., 2014;Wig et al., 2014; Yeo
et al., 2011). This data-driven approach allows one to generatemore ac-
curate seed regions with common connectivity fingerprints. This is es-
pecially useful for anatomical regions that are functionally and
cytoarchitectonically heterogeneous, but do not possess gross morpho-
logical landmarks to delineate these boundaries, such as the cingulate
cortex. The cingulate cortex has been implicated in a wide range of be-
haviours including motor control (Amiez and Petrides, 2012; Paus,
2001), cognitive control (Shenhav et al., 2013), conflict monitoring
(Botvinick et al., 1999; Botvinick, 2007), economic decision making
(Kolling et al., 2014; Rushworth and Behrens, 2008), and social cogni-
tion (Apps et al., 2015, 2013; Behrens et al., 2009; Chang et al., 2013;
Lockwood et al., 2015). This functional variability is a likely consequence
of the variable cytoarchitecture and diverse connectivity fingerprints
present in the cingulate cortex. Although it is not currently possible to
detect cytoarchitectonic boundaries within the cingulate cortex using
fMRI alone, it is possible to partition the cingulate cortex into sub-
regions with unique connectivity fingerprints (Beckmann et al., 2009;
Neubert et al., 2015). This makes the cingulate cortex an excellent
model to establish our data-driven parcellation approach.

As well as being an excellent model for investigating connectivity-
based parcellation, the cingulate cortex is also one of themost reported
structures implicated in ASD (Cauda et al., 2011). There is a large body of
literature highlighting that individualswith ASDhave differences in cin-
gulate anatomy and cytoarchitecture, cingulate connectivity as mea-
sured by RS-fMRI and DTI, and cingulate function. Post mortem
studies of the anterior cingulate cortex (ACC) have shown that Area
32 in individualswith ASDhas decreased long rangefibres but increased
short-range connections (Zikopoulos and Barbas, 2010), whilst Area
24b showed significantly decreased neuron size and area in ASD, and
Area 24c shows decreased neuron density in layer V\\VI in ASD
(Simms et al., 2009). Simms et al. (2009) also investigated the presence
of Von EconomoNeurons (VENs), and found that three of the nine cases
presented with a significant increase in VENs whilst the remaining six
presented with a significant decrease in VENs. The heterogeneity pres-
ent in these post-mortem analyses is also present in-vivo structural
analyses such as voxel based morphology (VBM), as well as cortical
thickness and surface area. In a meta-analysis of VBM studies by
Cauda et al. (2011) they found that individuals with ASD showed a sig-
nificant increase in subgenual ACC greymatter volume (putatively Area
33). However, two other meta-analyses conducted by Nickl-Jockschat
et al. (2012) and Via et al. (2011) did not find any differences in cingu-
late cortex grey matter (GM) volume in ASD. It is possible that this var-
iability is due to differences in the developmental trajectory of
individuals with ASD, and depending on the age of acquisition you
may or may not find group differences (Uddin et al., 2013). Indeed,
Duerden et al. (2011) found that children and adolescents with ASD
were more likely to show a difference in cortical thickness in the ACC
compared to adults with ASD. Greimel et al. (2013) also showed differ-
ent developmental trajectories in GM volume in the middle cingulate
cortex (MCC), although similar studies by Foster et al. (2015) and
Zielinski et al. (2014) did notfindGroup×Age interactions in the cingu-
late cortex.

There is also a large body of literature using fMRI and functional con-
nectivity (RS-fMRI) to investigate the cingulate cortex in ASD. However,
the majority of these studies have investigated the default mode net-
work (DMN) in ASD rather than the cingulate cortex specifically. Like
the cingulate cortex, the DMN has been linked to social cognition and
theory of mind processes (Buckner et al., 2008), making the DMN a tar-
get for investigation in ASD. Kennedy and Courchesne (2008a) had indi-
viduals with ASD make true/false statements about themselves or
someone else, and these statementswere either about personality traits
(internal) or objects (external). They found a task-independent reduc-
tion of activity in the ACC in ASD (bordering the subgenual ACC
(sACC) and pregenual (pACC)). Group differences in internal vs external
task judgments were found in the superior medial prefrontal cortex
(putatively BA 9) and dorsal posterior cingulate cortex (dPCC). All of
these group differences (both task-dependent and task-independent)
fell within the DMN. A meta-analysis of studies using both social and
non-social paradigms in ASD also found differences within cingulate
nodes of the DMN (Di Martino et al., 2009). Specifically, pACC and ven-
tral PCC (vPCC) were more active in controls compared to ASD individ-
uals during social paradigms. RS-fMRI studies investigating the DMN in
ASD typically found reduced connectivity between the anterior andpos-
terior cingulate nodes (Assaf et al., 2010; Di Martino et al., 2013;
Kennedy and Courchesne, 2008b; Kennedy et al., 2006; Starck et al.,
2013; Washington et al., 2014). However, as with the previously men-
tioned structural studies, this finding has not always been replicated
(Lynch et al., 2013;Monk et al., 2009; Tyszka et al., 2014). Asmentioned
previously, it is possible that the age of the sample may influence the
ability to detect group differences in RS-fMRI as well as structural imag-
ing (Uddin et al., 2013). Several recent investigations of functional con-
nectivity in ASD have suggested that careful characterization of
participant age is necessary in order to avoid obscuring developmental
group differences (Abbott et al., 2015; Nomi and Uddin, 2015; Uddin
et al., 2013). Given that differences in age appear to have such a strong
impact on structural and functional analyses of individuals with ASD,
we have taken steps to match groups for age and include age as a
variable of interest in order to investigate divergent developmental
trajectories.

Here, we provide a novel multi-modal pipeline for investigating an-
atomical variability in clinical populations. Specifically, we used a large
dataset of RS-fMRI data from individuals with ASD and matched con-
trols (N=260, 50% ASD) to investigate the parcellation and connectiv-
ity of the cingulate cortex. First, we hypothesise that seeds generated
using connectivity-based parcellation will improve network detection
and increase within network connectivity strength compared to tradi-
tional methods. We also hypothesise that these seeds will have distinct
behavioural profiles established using meta-analytic tools. Finally, this
approach allowed us to address whether: (i) group differences exist in
the organization of the cingulate cortex (i.e. presence or absence of cin-
gulate subregions in a clinical population), or (ii) whether the architec-
ture of connections is the same between groups but connectivity
strength differs between groups.

2. Methods

Fig. 1 provides an overview of the analytical steps. Individual RS-
fMRI sessions were downloaded from the ABIDE database in order to
create a large, matched cohort. For each individual, we created a con-
nectivity matrix establishing the connectivity strength between voxels
within themask (i.e., cingulate cortex) and all GMvoxels in the brain in-
cluding the original mask. We then used a hierarchical clustering ap-
proach to partition the cingulate cortex into sub-regions with unique
connectivity patterns based on the group average of the previously gen-
erated connectivity matrices. This group-based solution was then back-
projected on individual subjects in order to investigate replicability of
the group solution at the individual level (i.e. how often does each clus-
ter in the group solution present itself in an individual subject). It was
also possible at this stage to generate probability maps of cingulate
parcellations in order to quantify variability in the size and shape of
each parcellation across individuals. Parcellations based on unique con-
nectivity fingerprints should also have unique functional profiles. We
used the Brainmap database to establish functional profiles for each cin-
gulate parcellation. We also used Meta-Analytic Connectivity Modeling
(MACM) to generate task-dependent connectivity maps to compare
with task-independent connectivity maps. The aim of these previous
steps was to establish the reliability of the cingulate parcellation



Fig. 1.Overview of the analysis pipeline. Data were extracted from the ABIDE database (Di Martino et al., 2013) and cortical masks were extracted from the Harvard-Oxford cortical atlas.
For each subject connectivity matrices were calculated showing connectivity between the cortical mask (cingulate cortex) and all greymatter voxels. Thesematrices were averaged and a
hierarchical clustering algorithmwas used to cluster voxelswith similar connectivity patterns. This group average result was then forced onto single subject connectivitymatrices anddice
similarity was used establish how replicable the group template was for each individual subject. Individual subject clustering solutions were binarised and summed together to create
probability maps. These probability maps were used for all subsequent analyses.
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solution. Finally, we used non-parametric permutation testing to deter-
mine whether connectivity strength within each cingulate
parcellation's connectivity fingerprint was significantly altered in ASD,
including Group × Age and Group × GM interactions.

2.1. Participants

Data were extracted from the ABIDE database (Di Martino et al.,
2013) using the same exclusion criteria as DiMartino et al. (2013). Sub-
jects were excluded if they were: female, N40 years old, IQ b 80, or
moved excessively (mean framewise displacement (FD) N0.5 mm). It
was important to remove these individuals as theywere not well repre-
sented in the ABIDE database and their inclusion in the analyses would
introduce additional variability or a potential bias. Given our interest in
developmental trajectories we excluded a small number of older indi-
viduals (N40 years old) who all came from one centre and might artifi-
cially drive age effects or Group × Age interactions. We additionally
removed subjects with poor GM segmentation as this would impact
on quality of the DARTEL template and subsequent normalisation. GM
segmentation was assessed using the squared distance of each image
to the sample mean (tool available in the VBM8 toolbox: http://dbm.
neuro.uni-jena.de/vbm/download). If this distance was N2SD from the
sample mean from the same scanning centre then the subject was re-
moved. Datasets were also excluded if they did not have whole brain
Table 1
Participant demographic.

Controls

Min Max Mean SD

Age (years) 7.26 31.78 14.87 4.90
IQ 83.00 135.00 109.40 11.55
Framewise displacement (mm) 0.08 0.31 0.17 0.05
coverage (signal present at z = −55 (ventral bound of Crus II) or
lower after normalisation). This lead to 11/28 centres (500 datasets)
being excluded. A centre was also rejected if it had b7 ASD or typically
developing (TD) individuals that met our inclusion criteria. After rejec-
tion, nine centres contributed to this study with 131 ASD and 169 TD
datasets. We subsequently matched the two groups for age, full scale
IQ (FIQ), and head movement. This left 130 ASD and TD individuals in
each group. Group demographics are reported in Table 1, and histo-
grams are shown in Supplemental Fig. 1.

2.2. Pre-processing

Initial pre-processing was conducted in SPM8 (www.fil.ion.ucl.ac.
uk/spm). Structural Images were first coregistered to the T1 template
before the New Segmentation toolbox was used to segment the data
into GM, white matter (WM), and cerebro spinal fluid (CSF) images
ready for input to the DARTEL toolbox (Ashburner, 2007). The DARTEL
toolboxwas used to create a study specific template given that the aver-
age age of participantswas 14 years±4 years, and as such theMNI tem-
plate (generated using 18–30 years old brains) would not be
appropriate (Wilke et al., 2008). The discrepancy between theMNI tem-
plate and the DARTEL template used in this study are visualised in Sup-
plemental Fig. 2. Functional images were coregistered to the individual
structural images, realigned, normalized to the DARTEL template space
ASD

Min Max Mean SD t value p value

7.15 32.00 13.94 4.30 1.62 0.11
81.00 136.00 106.82 12.86 1.70 0.09
0.06 0.28 0.17 0.05 0.07 0.95



Table 2
Peak coordinates, size, and strength of probability maps. The peak co-ordinates are given
inMNI space. Themax value reflects the peak value of the probability map. Dice similarity
values indicate the average spatial overlap between a group-level cluster and an individ-
ual-level cluster.

Peak Max Cluster size Dice similarity

x y z (%) (mm3) Mean SD % Matches

ACC 3 44 3 82 25,150 0.67 0.15 93.46
aMCC 6 19 39 77 23,314 0.62 0.14 92.31
pMCC 10 −8 41 47 7392 0.51 0.14 65.38
dPCC 8 −33 45 35 3389 0.53 0.17 45.38
vPCC 5 −46 25 70 15,821 0.65 0.16 79.62
RSC right 13 −47 0 42 1242 0.75 0.19 45.00
RSC left −14 −41 −3 42 983
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(resliced to 3× 3×3mm), and smoothedwith an 8mmkernel. All anal-
yses were conducted in DARTEL template space and the final results
were warped into MNI space for generating figures and anatomical lo-
calization guided by the Anatomy toolbox (Eickhoff et al., 2006, 2007,
2005).

Further data pre-processing was conducted using in-house scripts
written using MATLAB (MathWorks, Natwick, MA). Data were
‘scrubbed’ to remove bad datapoints (N0.5 mm FD or N0.5% differential
spatial variance - DVARS; Power et al., 2012), and filtered in the band
0.009–0.2 Hz. Typically, resting state studies ignore oscillations
N0.1 Hz, however, studies by Baria et al. (2011), and Balsters et al.
(2013) have demonstrated that signals between 0.1 and 0.2 Hz contain
physiologically relevant information that can often be used to distin-
guish between clinical populations. Adequately correcting for headmo-
tion artifact has proven to be an essential step in RS-fMRI analyses,
especially in investigations of ASD (Deen and Pelphrey, 2012; Tyszka
et al., 2014). Based on Yan et al. (2013), and Satterthwaite et al.
(2013), we modelled head movement using the Friston 24-parameter
approach (Friston et al., 1996) to remove potential residual headmotion
signal (6 original regressors generated during realignment, 6 time
shifted regressors, and both of these squared) along with the first 3
principle component time series extracted from individual WM and
CSF masks (Chai et al., 2012).

2.3. Hierarchical clustering

In order to partition the cingulate cortex into subregions with
unique connectivityfingerprintswe beganby creating amask of the cin-
gulate cortex using theHarvard-Oxford cortical atlas. Masks of the ante-
rior cingulate, posterior cingulate, and paracingulate cortex were
thresholded at N25% and summed to create a mask of the cingulate cor-
tex. Vogt et al. (2005), Shackman et al. (2011), Amiez and Petrides
(2012), and Amiez et al. (2013) have highlighted that the presence or
absence of the paracingulate sulcus can lead to a significant dorsal
shift in Area 32′. We therefore chose to include the paracingulate cortex
in order to make sure that Area 32′ was not excluded in subjects who
have a prominent paracingulate sulcus. This mask was then warped
into DARTEL space. To establish connectivity fingerprints for each sub-
ject we separated the RS-fMRI time-courses of the voxels belonging to
the cingulate mask and those belonging to all GM voxels in the brain
(including the original cingulate mask). We then calculated the cross
correlation matrix between these two sets of time-courses, and trans-
formed it to z-values using the Fisher's r-to-z transformation. Each col-
umn of this cross correlation matrix reflected the connectivity of a
voxel within the cingulate mask with all GM voxels in the brain. We
then performed a fixed-effects analysis of thematrices either separately
for the ASD and TD groups, or for both groups combined. The resulting
matrix was transformed back to correlation values using the inverse
Fisher's transformation and used as input to a hierarchical clustering al-
gorithm (average linkage). The resulting dendrogramwas cut at multi-
ple arbitrary uniform levels. Each level could potentially result in a
different number of identified clusters. In order to determine which
cut level was most appropriate we used the silhouette measure
(Rousseeuw, 1987) to quantify to what extent the results derived
from the group corresponded to individual data. The silhouette value as-
sesses cluster separation by measuring how similar a voxel is to other
voxels in the same cluster compared to voxels in the nearest cluster,
thus maximizing within cluster similarity and between cluster differ-
ences. A silhouette valuewas generated for each cut level of the dendro-
gram for each individual subject and a t-test was used to determine
which cut levels resulted in the highest silhouette values (cut levels
most representative across individuals). We derived a plot showing
the silhouette t-scores for each dendrogram cut level, and isolated
local maxima as potential optimal solutions for the hierarchical cluster-
ing. The voxels belonging to a given cluster were mapped back in the
brain space to generate seeds to be used in further analyses. Single-
subject clustering solutionswere generated by running the same hierar-
chical clustering procedure on individual correlation matrices and cut-
ting the dendrogram at a position equaling the number of clusters
provided by the previous group-level estimates. Finally, we used a pro-
cedure described inMantini et al. (2013) to assess the spatial correspon-
dence between clusters derived at the group-level and those derived
from individual subjects. We used the Dice similarity measure (Dice,
1945) to compare the entire set of group-level clusters (i.e. 6 clusters)
to the clusters derived for an individual (also 6 clusters). The matrix of
Dice similarity values (i.e. spatial overlap between every group-level
cluster and every individual-level cluster) was input into a hierarchical
clustering algorithm (average linkage). After the creation of the dendro-
gram, we selected the cutoff value for the graph that yielding the max-
imum number of two-element clusters (i.e. a match between one
group-level and one individual cluster). Note that this method does
not enforce a minimal overlap cutoff value between a group cluster
and the individual cluster solution but rather provides an overall opti-
mal match. The Dice similarity values for each cluster are included in
Table 2.

2.4. Seed-to-voxel analyses

Seeds generated through hierarchical clustering were used to estab-
lish seed-to-voxel connectivityfingerprints and subsequently groupdif-
ferences in connectivity. First, a timecourse was extracted for each seed
region (averaged across voxels within the seed) and this timecourse
was correlated with all GM voxels in the brain. Individual correlation
maps were Fisher's r-to-z transformed and fed into a General Linear
Model (GLM) with 10,000 permutations in Randomise (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/; (Jenkinson et al., 2012; Winkler et al.,
2014)). The GLM included scanning centre, mean FD, Full scale IQ, age
(log transformed to account for skewed distribution), Group × Age in-
teraction, individual GM images, and Group × GM interaction. Individu-
al GM images were incorporated into the GLM as voxel-dependent
regressors, i.e. the GM regressor of the GLM changed for each voxel
analysed to reflect GM values within the same voxel (Oakes et al.,
2007). To correct for multiple comparisons at the cluster-level, we
employed Gaussian random field theory, voxel-level Z N 3.1, cluster-
level p b 0.05 FWE, based on Woo et al. (2014).

2.5. Meta-Analytic Connectivity Modelling

The BrainMap database (www.brainmap.org) (Fox and Lancaster,
2002; Laird et al., 2011, 2009a, 2005) was employed for the retrieval
of relevant neuroimaging experiments. For our analysis, only whole
brain studies of healthy subjects reporting activation in standard stereo-
taxic spacewere considered. All experiments that investigated age, gen-
der, handedness, training effects, or involved a clinical population were
excluded. As the first step of the analysis we identified (separately for
each seed region) all experiments that featured at least one focus of ac-
tivation within the respective seed (MNI space). In order to facilitate
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such filtering, coordinates from Talairach space were converted into
MNI coordinates by using Lancaster transformation (Lancaster et al.,
2007). Then, all experiments activating the currently considered seed
were identified. The retrieval was solely based on reported activation
coordinates, not on any anatomical or functional labels.

Functional connectivity of the different seeds was evaluated using
Meta-Analytic Connectivity Modelling (MACM) (Robinson et al., 2012,
2010). MACM assesses which brain regions are co-activated above
chance with a particular seed region in functional neuroimaging exper-
iments (Balsters et al., 2014; Eickhoff et al., 2010; Laird et al., 2009b).
MACM first identifies all experiments in a database that activate a par-
ticular brain region (as described above) and then tests for convergence
across (all) foci reported in these experiments. Since experiments are
selected by activation in the seed, highest convergencewill be observed
within that region. Significant convergence of the reported foci in other
brain regions, however, indicates consistent co-activation, i.e., task-
based functional connectivitywith the seed. Thewhole brain peak coor-
dinates of the identified experiments were downloaded from BrainMap
database for each seed region. Coordinates were analysed with the
modified activation likelihood estimation (ALE) algorithm (Eickhoff
et al., 2012; Eickhoff et al., 2009) to detect areas of convergence. This ap-
proachmodels each focus as a Gaussian distribution reflecting empirical
estimates of the uncertainty of different spatial normalisation tech-
niques and intersubject variability as a function of the number of sub-
jects. Modelled activation (MA) maps were calculated for each
experiment by combining the Gaussian distributions of the reported
foci (Turkeltaub et al., 2012), taking the union across these voxel-wise
ALE scores that describe the convergence of results at each particular lo-
cation of the brain. To distinguish ‘true’ convergence between studies
from random convergence, i.e., noise, in the proposed revision of the
ALE algorithm (Eickhoff et al., 2012), ALE scores are compared to an an-
alytical null-distribution reflecting a random spatial association be-
tween experiments (Eickhoff et al., 2012; Turkeltaub et al., 2012). The
p-value of an observed ALE is then given by the proportion of this
null-distribution (precisely, its cumulative density function) corre-
sponding to equal or higher ALE values. The ALE maps reflecting the
convergence of co-activationswith any particular seed regionwere sub-
sequently thresholded at p b 0.05 FWE corrected and converted into z-
scores for display.

The functional characterization of the cingulate regions was based on
the ‘Behavioural Domain’meta-data categories available for each neuro-
imaging experiment included in the BrainMap database. In a first step,
we determined the individual functional profile of each region of interest
by using the probability of a psychological process being present given
knowledge of activation in a particular brain region. This likelihood
P(Task|Activation) can be derived from P(Activation|Task) as well as
P(Task) and P(Activation) using Bayes rule. Significance at p b 0.05
(corrected for multiple comparisons using False Discovery Rate (FDR))
was then assessed with a chi-squared test (Eickhoff et al., 2011; Laird
et al., 2009b;Nickl-Jockschat et al., 2011). The functional characterizations
generated using the BrainMap database are generated from studies in
adult healthy volunteers. However, we believe this information is still rel-
evant for the investigation of younger age-groups (children, adolescents),
and also forASDpatients. Our rationale is based on two assumptions:first,
we assume that spatial normalisation is sufficient tomatch grossmorpho-
logical landmarks and effectivelymatch structures in younger individuals
to an adult template. This ensures that the probability maps are in the
same space so that functional decoding inMNI space is testing equivalent
anatomical structures in all subjects. Second, we believe that structure-
function relationships are consistent throughout the lifespan, i.e., a partic-
ular functional area should have the same association tomacroanatomical
features (that drive normalisation) in children, adolescents, and adults.
This allows us to characterize, in children, adolescents, and adults, the
functions that elicit an activation in a given structure. We believe this is
a powerful tool for supplementing task-free analyses because it can help
to generate structure-function relationships. In this study the application
of functional decoding using the BrainMap database allows us to assign
functions to our cingulate clusters, and subsequently infer what the be-
havioural consequences of deviant connectivity might be.

3. Results

3.1. Clustering the cingulate cortex

3.1.1. What is the optimal number of cingulate subregions?
First, both ASD and TD subjects RS data were input as one group into

the hierarchical clustering algorithm. This revealed two clustering solu-
tions with significant across-subject similarity. The first solution sepa-
rated the posterior cingulate cortex (PCC) from the anterior cingulate
and paracingulate gyrus (supplemental Fig. 3). The second solution
subdivided the cingulate cortex into six clusters (Fig. 2). This second so-
lution is more anatomically plausible based on previous studies of
cytoarchitecture and connectivity-based parcellations (Beckmann
et al., 2009; Neubert et al., 2015; Palomero-Gallagher et al., 2009;
Torta et al., 2013). We will also demonstrate later (Section 3.2.2) that
the subdivisions of the ACC present in the six cluster solution have
unique connectivity fingerprints and behavioural profiles, further
supporting the use of this higher order clustering solution. Although
ASD and TD individuals were treated as one group, silhouette values
were generated for each individual. This allowed us to check for group
differences in silhouette values to determine whether the group mean
was a better representation of one group over another. There were no
significant differences in the silhouette value between groups (ASD:
0.157 ± 0.117; TD: 0.157 ± 0.135; t(258) = 0.0476, p = 0.96).

ASD and TD groups were also analysed separately to determine
whether there were different optimal solutions for each group (Fig. 3).
As in the previous step, silhouette values were generated for each indi-
vidual, however, in order to allow for different solutions for each group
we created separate dendrograms. Thus cutting the dendrograms at the
same arbitrary point could result in different clustering solutions for
each group. This approach yielded a six-cluster solution in ASD and a
five-cluster solution in the TD group (Fig. 3). The six-cluster solution
for the ASD groupwas almost identical to the six-cluster solution gener-
ated using all subjects. The five-cluster solution for the TD group was
highly similar to the six-cluster solution, however, the ventral posterior
cingulate cluster (Fig. 2a, yellow) and the retrosplenial cortex (Fig. 2a,
red)weremerged together. Given the high degree of similarity between
these group specific solutions, and their similarity to the solution gener-
ated based on all subjects (which showed no group differences, p =
0.96) the six-cluster solution generated from both groups was chosen
for subsequent analyses.

3.1.2. How replicable are subregions at the single subject level?
Dice similarity was used to assess how often each of the six clusters

in the group mean were replicated across individuals, i.e. if a cluster at
the individual level matched a cluster at the group mean level it was
marked as 1, otherwise it was marked as 0. When a group level cluster
was not found at the individual level it was mostly because the cluster
was subsumed by an adjacent cluster. This is similar to the example
given previously where the ventral posterior cingulate cortex and
retrosplenial cortex were merged. The labels used to describe these
clusters were taken from the four-region model of the cingulate cortex
(Palomero-Gallagher et al., 2009; Vogt, 2009). The anterior cingulate
cortex (ACC: Fig. 2a magenta) was the most replicable across subjects
(93.46% of individual subject clustering solutions showed a cluster
that was significantly similar in position and shape to the group-based
ACC). Replicability of the other clusters ranged from 92.31% to 45%
(see Fig. 2a and Table 2). Chi squared tests found no differences in clus-
ter matching between groups for any cluster (p N 0.44), further suggest-
ing that the organisation of cingulate connections is highly similar in
ASD and TD individuals. Based on the similarity between groups in sil-
houette values and single-subject replications of the clustering solution,



Fig. 2. Clustering of the cingulate cortex. The cingulate cortexwas partitioned into six clusters referred to throughout themanuscript as: ACC (magenta), aMCC (blue), pMCC (cyan), dPCC
(green), vPCC (yellow), and RSC (red). The legend shows these labels along with the single-subject reproducibility of each cluster, i.e. the ACC cluster was present in 93.46% of subjects.
A) The clustering of the cingulate cortex based on an average connectivity matrix from all participants. B) Probability maps for each cluster thresholded at 25%. The black dotted outlines
show regions of overlap between clusters. C) Probability maps thresholded using a winner-takes-all approach. In the case of overlapping voxels, the voxel with the higher probability is
assigned, i.e. if the voxel has a 25% probability of being ACC and 30% of being aMCC the voxelwas assigned to the aMCC cluster. D)Heatmaps showing the probabilities for each cluster, red
being high probability and green being low. The scale of each heat map was adjusted based on the maximum of each cluster. This gives a more accurate visualisation of the variability
within each cluster. White dotted lines mark the boundaries between clusters. Probability maps are available for download at http://www.ncm.hest.ethz.ch/downloads/data.html (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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it is unlikely that the six-cluster solution introduces bias against TD
individuals.

Probability maps for each cluster were created by binarising and
summing clusters from each individual subject (available for download
Fig. 3. Clustering solutions for (a) all subjects, (b) ASD only, (c) TDonly. All subjects andASD sub
solutionwhere the vPCC (yellow in a and b) and RSC (red in a and b)weremerged. Apart from t
subject solution.
at http://www.ncm.hest.ethz.ch/downloads/data.html). Fig. 2b shows
probabilitymaps thresholded at N25%. It is clear that there are a number
of overlapping voxels between clusters (black dotted lines highlight
areas of overlap). We therefore used a winner-take-all approach and
jects showed a highly similar 6 cluster solution,whereas TD only subjects showed5-cluster
his difference all other clusters in the TD clustering solutionwere similar to the ASD and all
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assigned overlapping voxels to the cluster with the greater probability.
For example, if there was an overlapping voxel between the ACC and
aMCC, and it had a 53% probability of being ACC and 47% probability
of being aMCC, then the voxelwas assigned to theACC cluster. Thenum-
ber of overlapping voxels with the exact same probability was very low
(typically below b 0.3%, but in the case of vPCC and dPCC this was a little
higher at 1.2%). The winner-take-all probability maps are shown in
Fig. 2c and details of the strength and size of the probabilitymaps are in-
cluded in Table 2. Fig. 2d shows the heatmaps for the probability of each
cluster.

3.2. Function and connectivity of cingulate clusters

3.2.1. Is there an overlap between task-independent and task-dependent
connectivity fingerprints?

Fig. 4 shows the RS-fMRI (task-independent) connectivity finger-
print for each cluster (dashed box), next to the task-dependent connec-
tivity fingerprint (solid box) as established through MACM. Generally,
RS-fMRI connectivity revealed more widespread connectivity finger-
prints than MACM, which is not surprising given that the input data
forMACMare activationmaxima taken from reported literature. Never-
theless, we found consistent overlaps between task-independent and
task-dependent connectivity maps for most cingulate subregions. We
used Dice similarity and hierarchical clustering to compare task-
independent and task-dependent connectivity fingerprints (Mantini
et al., 2013). Dice similarity showed that there was a significant overlap
in the connectivity fingerprints for the ACC (29% overlap), aMCC (40%
overlap), pMCC (18% overlap) and the vPCC (20% overlap). Task-
dependent and task-independent connectivity fingerprints for the
dPCC (6% overlap) and the RSC (3% overlap) were not significantly sim-
ilar. Anatomical details of the overlapping regions in each connectivity
map are provided in supplemental results. Given that the task-
independent connectivity fingerprints included both ASD and TD sub-
jects, whilst task-dependent connectivity maps from MACM only in-
cluded healthy subjects, we repeated the Dice similarity using the
task-independent connectivity fingerprints generated from TD subjects
only. The results were almost identical to the previous results (Signifi-
cant overlap: ACC 28%; aMCC 40%; pMCC 19%; vPCC 19%; non-
significant overlap: dPCC 6%; RSC 3%).
Fig. 4. Comparison between resting state andMACMconnectivity fingerprints. For each cluster,
shown side-by-side. Both resting state andMACMmapswere corrected formultiple comparison
and right hemisphere showed highly similar connectivity patterns. The colour code for boxes c
3.2.2. Functional characterization of cingulate clusters
In order to illustrate the functional specificity of each cluster we

compared behavioural domains and paradigm classes associated with
each cluster contrasted against adjacent clusters. Fig. 5 shows the re-
verse inference Bayesian probability (i.e. the likelihood of a behavioural
domain eliciting an activation within a given cluster). The likelihood of
specific paradigm classes activating a given cluster are provided in sup-
plemental Fig. 4. In summary, the ACC and vPCC aremost likely to be ac-
tivated by emotion and (social) cognition behavioural domains, the
aMCC is most likely to be activated by attention and working memory,
and the pMCC and the dPCC are most likely to be activated by move-
ment execution, somatosensory perception and some aspects of lan-
guage processing. There were no significant differences in the
behavioural domains or paradigm classes between the vPCC and RSC.

3.2.3. How does connectivity strength change due to the size and placement
of a seed?

In order to comparewith previous seed-based studies, we compared
the probability maps generated in this study (Fig. 2c) with 4 mm and
8 mm radius sphere seeds centred at the peak of the probability maps.
To establish network connectivity strength we averaged the z-values
of voxels with cluster specific connectivity masks. These masks only in-
cluded voxels that showed significant connectivity (FWE, p b 0.05)with
all three seed types (i.e., mask voxels showed significant connectivity
with the 4 mm sphere, 8 mm sphere, and probability maps). Fig. 6
shows bar graphs highlighting the network strength (averaged z-value
of the voxels in the mask underneath the bar graph) for each cluster.
All clusters showed a significant main effect of seed type (highest:
RSC: F(2516) = 168.08, p b 0.001; lowest: pMCC: F(2516) = 62.23,
p b 0.001). Fig. 6 shows that in 5/6 cases there was significantly higher
network connectivity using probability maps compared to 4 mm or
8 mm spheres. There were no significant group differences or
Group × Seed type interactions. This shows that the use of
connectivity-based probability maps significantly increases the ability
to detect connectivity networks compared to traditional approaches
using smaller spheres.

Although there were no group differences, there was a trend to-
wards a main effect of group for the vPCC seeds (p = 0.059). The
greatest group difference appeared to be with the 4 mm sphere, so we
resting state (left, dashed line box) andMACM(right, solid line box) connectivitymaps are
s (FWE, p b 0.05). Only the left hemisphere is presented for eachmodality, however the left
orresponds to the colour code established in Fig. 2.



Fig. 5. Functional characterization of cingulate clusters: bar plots show the reverse inference Bayesian probabilities (i.e. the likelihood of a behavioural domain given the location of the
activation cluster) for behavioural domains associated with each cluster. Behavioural domains are contrasted with adjacent clusters and corrected for multiple comparisons (FDR,
p b 0.05). Thus a larger bar indicates a behavioural domain is more likely to elicit activity in a specific cluster. The colour of each bar corresponds to the colour code established in
Fig. 2. A) ACC (magenta) compared to aMCC (blue). B) aMCC (blue) compared to pMCC (cyan). C) pMCC (cyan) compared to dPCC (green). D) dPCC (green) compared to vPCC
(yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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transformed the vPCC probability map into twenty-four 4 mm spheres
and assessed the variability of the group connectivity fingerprints.
Fig. 7a shows the mask used to extract z-values (voxels showing signif-
icant connectivity using the winner-takes-all vPCC probability map
(yellow: Fig. 2c)), and Fig. 7b shows the probability map for the vPCC
cluster. Next, for each 4 mm seed region we investigated whether con-
nectivity differed between ASD and TDgroups. The ASDgroup exhibited
generally lower connectivity (Z scores for each 4 mm sphere are graph-
ically presented in supplemental Fig. 5), but depending on where the
4 mm sphere was placed inside the vPCC probability map, the effect
size of this group difference ranged from 0 to 0.3 (Fig. 7c: black/pur-
ple/blue indicate a low effect size and yellow/red indicates a larger ef-
fect size). Spheres showing a significant group difference are outlined
in black on Fig. 7b,c. Fig. 7d shows that connectivity strength strongly
correlated with vPCC probability in both groups (ASD: r = 0.57, p =
0.004; TD: r=0.57, p=0.004). Although there was no significant rela-
tionship between effect size and vPCC probability (r = 0.22, p= 0.31),
the group differences appear to be in the centre of the probability map
and group differences decrease around the edges.
3.3. Are there differences in cingulate connectivity in ASD?

A Group × Age interaction was present between aMCC and the right
precentral/middle frontal gyrus (Fig. 8a). This interaction is due to con-
nectivity between the aMCC and right precentral/middle frontal gyrus
increasing with age in ASD (r = 0.3, p b 0.001), whereas connectivity
between these regions decreased with age in TD individuals
(r = −0.17, p = 0.053). This result was significant at cluster extent
Z N 3.1 (p = 0.029, FWE corrected) with a moderate effect size of 0.53
(Cohen's d). A Group × GM interaction was also present (Fig. 8b),
with connectivity between the ACC and the Rectal gyrus (Area 25) de-
creasing with increasing GM in ASD (r = −0.2, p = 0.023), whereas
connectivity increased with increased GM in TD (r = 0.21, p = 0.016).
This result was significant at cluster extent Z N 3.1 (p = 0.047, FWE
corrected) with a moderate effect size of 0.54 (Cohen's d). Age and
GM effects common to both groups are presented in supplemental
Figs. 7–11.

4. Discussion

Here, we applied a new analysis pipeline to investigate brain con-
nectivity in ASD.We used the cingulate cortex as our anatomical region
of interest because it is one of the most investigated structures in ASD
(Cauda et al., 2011), and a great deal is known about its organization
and connectivity (Beckmann et al., 2009; Margulies et al., 2007;
Neubert et al., 2015; Torta and Cauda, 2011; Torta et al., 2013; Vogt,
2009). Our hierarchical clustering approach partitioned the cingulate
into regions consistent with existing models (Palomero-Gallagher
et al., 2009; Torta and Cauda, 2011). The validity of our clustering solu-
tion was further supported by: (i) demonstrating an overlap between
task-dependent and task-independent connectivity fingerprints, (ii)
showing that clusters with distinct connectivity fingerprints participate
in different behaviours, and (iii) demonstrating the robustness and rep-
lication of clustering solutions at the single subject level. We also dem-
onstrated that using probability maps as seeds increased network
strength across both groups, and that seeds placed on the boundaries
of our probability maps were less likely to highlight group differences
in connectivity. Our results suggest that the organization of the cingu-
late cortex, as well as overall cingulate connectivity strength in ASD,
were more similar to TD individuals then previously suggested. We
did, however, demonstrate a Group × Age interaction showing in-
creased connectivity between the aMCC and right precentral/middle
frontal gyrus with age in ASD. We also found a Group × GM interaction
between the ACC and the rectal gyrus (Area 25) showing increased con-
nectivity with rectal gyrus GM in TD individuals.

4.1. Dissecting Brodmann's ACC into distinct subregions

A number of studies have proposed that there is a rostral-caudal
functional gradient in the frontal lobe (Badre and D'Esposito, 2009;
Blumenfeld et al., 2013; Koechlin and Summerfield, 2007). Brodmann



Fig. 6. Connectivity strength for differently sized seeds. Bars show the average z value across voxels in each network for each different seed threshold. The network of voxels that are
averaged is shown underneath each bar graph. The seeds tested included the probability maps shown in Fig. 2c, and a 4 mm and 8 mm radius sphere around the peak of the
probability maps. Blue bars show ASD and red bars show TD individuals. Error bars show the standard error. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(1909) was the first to propose a rostral-caudal distinction within the
cingulate cortex, specifically separating the precingulate cortex (classi-
cal ACC) and postcingulate cortex (PCC) based on the differences in
their cytoarchitecture. However, more recent analyses by Vogt et al.
(2005) and Palomero-Gallagher et al. (2009) have shown that
Brodmann's (1909) ACC can be further separated into four subregions;
Fig. 7. Varying seed placement and its relationship to group difference detection. A) vPCC conn
(effect size) at each 4 mm radius sphere. Black/purple indicates a low probability/effect size w
X=−2 (upper panel) and X= 5 (lower panel). The black outline indicates where there were
network strength (Z score) and vPCC probability for each group.
subgenual and pregenual ACC, aMCC, and pMCC. Our clustering analy-
ses provided two winning solutions; one provided an ACC cluster simi-
lar to Brodmann's ACC or the ACC mask in the Harvard-Oxford cortical
atlas (see supplemental Fig. 3) whilst the other split the ACC into
three distinct subregions: the pregenual ACC, aMCC, and pMCC (the
subgenual ACC was missing because it was not part of the original
ectivity fingerprint, putatively the DMN. B) vPCC probability map and C) group differences
ith yellow/red indicating a high probability/effect size. Slices in (b) and (c) are taken from
significant group differences (TD N ASD). D) Scatter plot showing the correlation between



Fig. 8.Group differences in resting connectivity. Group differenceswere overlaid on an inflated brain. The coloured lines highlight the boundaries of resting state networks established by
Yeo et al. (2011). A) A Group × Age interaction between the aMCC and right lateral PFC. The scatter plots to the right show that connectivity between these regions increased with age in
ASD (blue) but decreasedwith age in TD (red). B) A Group×GM interaction between theACC and the rectal gyrus (area 25). The scatter plots to the right show that connectivity decreased
as GM in the rectal gyrus increased in ASD (blue) whilst connectivity increased as rectal gyrus GM increased in TD (red). In all scatter plots the correlation values are shown in the top left
corner. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mask). We proposed (Section 3.1.1) that the solution that separates the
ACC, aMCC, and pMCC (Fig. 2) wasmore appropriate despite it having a
lower silhouette value. Finding the “optimal” number of clusters is still
an unresolved issue for connectivity-based parcellations. Eickhoff et al.
(2015) comprehensively review a number of potential metrics for es-
tablishing the validity of clustering solutions, but conclude that coher-
ence across multiple tools is the most likely to lead to the ground
truth. Our rationale for choosing the second clustering solution (six
cluster solution) was driven by the combination of cluster separation
criteria (silhouette values) as well as two sources of external knowl-
edge: 1) the separation of the ACC, aMCC, and pMCC conforms with
more recent anatomical models of the cingulate cortex that include
mylo- and cyto- and receptor architecture (Palomero-Gallagher et al.,
2009; Vogt et al., 2005), and 2) the ACC, aMCC, and pMCC clusters gen-
erated in this study had unique behavioural profiles established using
the Brainmap database (Section 3.2.2).Whilst theremay be some circu-
larity in selecting a winning solution based on the previous studies, the
independent evidence derived from the Brainmap database strongly
supports the idea that Brodman's ACC should be split into three unique
subregions.

The historical legacy of Brodmann's classification has lead to the ACC
being used as a “catch-all” term, often leading to the incorrect labelling
of the aMCC as dorsal ACC. Thismislabelling has ledmany to inaccurate-
ly discuss the functional properties of an aMCC result in relation to the
functional and anatomical properties of the ACC (Apps et al., 2013).
The results of our parcellation strongly support the distinction between
ACC and aMCC based both on task-independent and task-dependent
connectivity fingerprints, along with unique contributions of the ACC
and aMCC to distinct behavioural domains. Consistent with Torta and
Cauda (2011), we found that the ACC was involved in emotion and re-
ward studies, whilst the aMCC showed a functional preference for
working memory. A recent article by Liberman & Eisenberger
(Lieberman and Eisenberger, 2015), has suggested that the aMCC is ‘se-
lectively’ activated by pain. This assertion has lead to a number of inter-
esting follow-up discussions online between Liberman & Eisenberger
and Shackman, Yarkoni, and Wager (#cingulategate). In line with
Lieberman and Eisenberger (2015), we found that the most common
paradigm for eliciting activity in the aMCC was pain monitoring/dis-
crimination (see supplemental Fig. 4). However, this was only just larg-
er than the delayed match-to-sample paradigm. Moreover, when we
analysed which behavioural domains are likely to elicit activity in the
aMCC we found a higher probability for working memory than for
pain perception (Fig. 4a). These differences between our findings and
the findings of Lieberman and Eisenberger (2015) might result from in-
clusion of the paracingulate cortex in our initial mask, whereas
Lieberman and Eisenberger (2015) only considered the ACC and as-
sumed that regions dorsal to this are more likely to reflect the pre-
supplementary motor area (preSMA). Unfortunately, meta-analytic ap-
proaches lack information about individual anatomical variation, so it is
not possible to confirm whether our initial mask was overly generous
and includes sections of preSMA, or whether Lieberman and
Eisenberger (2015) have been too conservative and ignored Area 32′.
The pointwewish to highlight here is that there are clear functional dif-
ferences between the ACC and aMCC, which is also supported by
Liberman & Eisenberger (2015). Given that group differences were
found in both the ACC and aMCC, we would suggest that disruptions
to these cingulate subregions have unique behavioural outcomes (see
Section 4.3).

As well as separating the ACC and aMCC, we also found a separate
cluster for pMCC. Similar to a number of other structures
(Johansen-Berg et al., 2004; Picard and Strick, 2001), the VAC line per-
fectly separates the aMCC and pMCC (supplemental Fig. 12). The pMCC
showed the strongest relationship to the motor control behavioural do-
main. This finding is supported by both task-independent and task-
dependent connections with a motor network consisting of dorsal por-
tions of the primary motor cortex (area 4p), and the second somatosen-
sory area (S II). The behavioural profile also shows that the pMCC cluster
contributes to action execution tasks, and paradigms activating this re-
gion included finger tapping and tactile discrimination. The separation
between the aMCC andpMCC is consistentwith the rostral-caudal gradi-
ent of motor functionwithin the cingulate proposed by Picard and Strick
(2001). However, Picard and Strick (2001) suggested three regions (an-
terior rostral cingulate zone, posterior rostral cingulate zone, and caudal
cingulate zone) related to conflict monitoring, action selection, and ac-
tion execution respectively. Our results, alongwith other clustering stud-
ies using MACM (Hoffstaedter et al., 2013) and diffusion weighted
images (Beckmann et al., 2009) suggest amerging of theposterior rostral
cingulate zone and caudal cingulate zones, both of which would be in-
volved in action selection and execution.

4.2. The impact of seed size and placement in the vPCC

The ACC and vPCC presented with significantly similar behavioural
profiles, even though they have unique connectional fingerprints.
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Given their location and similar behavioural profiles, it is likely that
these are the anterior and posterior nodes of the DMN. Given the link
between the DMN and social cognition, this has probably been the
most investigated network in ASD. A number of studies have shown re-
duced connectivity within the DMN in ASD (Assaf et al., 2010; Di
Martino et al., 2013 , 2009; Kennedy et al., 2006; Kennedy and
Courchesne, 2008a, 2008b ; Spencer et al., 2012; Starck et al., 2013;
Washington et al., 2014), and in this study we found a trend towards
underconnectivity of the vPCC network (putatively the DMN) in ASD,
although this did not reach significance (network strength based on
the vPCC probability map: t(258) = −1.65, p = 0.1). However, there
are a number of previous studies that also fail to find differences in
the DMN when different analytical steps are taken, for example differ-
ences in low-pass filtering, task regression, or head movement correc-
tion (Müller et al., 2011; Tyszka et al., 2014). There have also been
several recent investigations of functional connectivity in ASD suggest-
ing that careful characterization of participant age is necessary in order
to avoid obscuring developmental group differences (Abbott et al.,
2015; Nomi and Uddin, 2015; Uddin et al., 2013). One issue that has
not previously been discussed is the placement of smaller seeds. It is
very typical to use 4mm radius spheres to generate time series of inter-
est for RS-fMRI analyses, however, transforming our vPCC probability
map into smaller 4 mm radius spheres showed the variability present
in this approach. Within one probability map, group difference effect
size varied from 0 to 0.3 (ES N 0.25 showed significant differences),
and the likelihood of finding a connectivity difference between the
ASD and the TD group decreased when the seed was moved to the
edges of the vPCC probabilitymap. Although therewas no significant re-
lationship between effect size and vPCC probability, both groups
showed a highly significant relationship between network strength
and vPCC probability (Fig. 7d). Given the variability present in the spa-
tial topographies of some resting state networks across individuals with
ASD (Hahamy et al., 2015) this connectivity-based parcellation ap-
proach can help to reduce the likelihood of Type II errors and help to
produce more robust and informative biomarkers for clinical RS-fMRI.

4.3. Opposing developmental trajectories in cingulate connectivity between
ASD and TD individuals

Although there were no significant group differences in cingulate
connectivity, we did find group interactions with age, and GM. Specifi-
cally, connectivity between the aMCC cluster and right lateral PFC in-
creased with age in ASD, but decreased in age in controls. Increased
connectivity between the lateral PFC and aMCC is consistent with post-
mortem studies of ASD (Zikopoulos and Barbas, 2013 , 2010).
Zikopoulous and Barbas (2013, 2010) showed that in individuals with
ASD there is an increase in short- or medium-range axons in the super-
ficial white matter below the ACC/aMCC (area 32). Zikopoulos and
Barbas (2010) also found a decrease in the ratio of calbindin (CB) and
parvalbumin (PV) inhibitory interneurons in the lateral PFC (area 9).
CB neurons within area 9 of the LPFC have been shown to be targeted
preferentially by ACC/aMCC pathways (Medalla and Barbas, 2009), sug-
gesting that connectivity between the lateral PFC and ACC/aMCC is like-
ly to be increased in ASD. Zikopoulos and Barbas (2013) propose that
this pathway facilitates gain modulation during attentional processes,
and that attentional deficits seen in ASD, such as excessive focusing on
one stimulus or thought and the inability to disengage and attend to
other stimuli flexibly, could be due to increased connectivity between
the aMCC and lateral PFC. Our findings add support to this hypothesis
by suggesting that there may be an additional developmental dimen-
sion to this process given that ASD and TD connectivity trajectories ap-
pear to differ dramatically with age. Further task-based studies are
necessary in order to disentangle the relationship between ASD, age,
and attention.

We also showed a Group × GM interaction in connectivity between
the ACC and the rectal gyrus (Area 25). Specifically, we demonstrated in
controls that as GM increased in the rectal gyrus, so did its connectivity
with the ACC. However, ASD individuals showed a decrease in ACC-
rectal gyrus connectivity when GM in the rectal gyrus increased. A re-
cent study by Palomero-Gallagher et al., (Palomero-Gallagher et al.,
2015) showed that the ACC and Area 25 have similar functional profiles
(both were associated with emotion and reward paradigms). The link
between social and emotional processing, and reward has been
highlighted in the Social Motivation Theory of ASD (Chevallier et al.,
2012; Dawson et al., 2012), which suggests that the value of social and
emotional stimuli are down-regulated in individuals with ASD. A
meta-analysis of social and non-social paradigms reported that individ-
uals with ASD showed reduced activation in the ACC during social par-
adigms (Di Martino et al., 2009). This reported activation falls close to
the peak of our ACC probability map (79% probability). The relationship
between increased connectivity and decreased GM in ASD is not neces-
sarily intuitive, however, Tang et al. (2014) previously found that an in-
crease in GM volume in ASD can be explained by a lack of dendritic
spine pruning in individuals with ASD. This decrease in dendritic spine
pruningwas linked to themammalian target of rapamycin (mTOR) sig-
naling, and rodents with overactive mTOR signaling also show ASD-like
social behaviours (Yizhar et al., 2011). Thus an increase in GM volume
(or lack of dendritic spine pruning) can actually be linked to poorer so-
cial behavior. Even though it is highly speculative at this point we sug-
gest that this increase in GM volume may be indicative of a lack of
dendritic pruning, which in turnmay have a knock-on effect on connec-
tivity with the ACC, and in turn influence social behaviour.
5. Conclusions

Whilst RS-fMRI has the potential to be a powerful tool for develop-
ing neurophenotypes, there are still methodological issues that reduce
its utility as a clinical tool. Our novel data-driven approach for generat-
ing seeds based on connectivity fingerprints circumvents potential
methodological issues regarding seed placement and significantly im-
proves network detection. Using this approach, we demonstrated that
the organisation of the cingulate cortex is far more similar in ASD
then previously suggested (connectivity based probability maps of the
cingulate cortex in both ASD and TD groups are available for download
at http://www.ncm.hest.ethz.ch/downloads/data.html). Although,
perturbed connectivity was present in two distinct cortico-cingulo cir-
cuits, which may lead to commonly reported ASD deficits in attention
and social interaction. Future studies should investigate other cortical
and subcortical regions of interest, which may provide more reliable
connectivity-based biomarkers of ASD.
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