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While the human medial prefrontal cortex (mPFC) is widely believed to be a key node of
neural networks relevant for socio-emotional processing, its functional subspecialization
is still poorly understood. We thus revisited the often assumed differentiation of the
mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was
based on a neuroimaging meta-analysis of perspective-taking that yielded two separate
clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s
brain-wide interaction pattern by two complementary measures of functional connectivity:
co-activation across a wide range of neuroimaging studies archived in the BrainMap
database and correlated signal fluctuations during unconstrained (“resting”) cognition.
Furthermore, we characterized the functions associated with these two regions using the
BrainMap database. Across methods, the ventral mPFC was more strongly connected
with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial
cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus,
temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was
selectively associated with reward related tasks, while the dorsal mPFC was selectively
associated with perspective-taking and episodic memory retrieval. The ventral mPFC
is therefore predominantly involved in bottom-up-driven, approach/avoidance-modulating,
and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in
top–down-driven, probabilistic-scene-informed, and metacognition-related processing in
social cognition.
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INTRODUCTION
Functional specialization in the human prefrontal cortex has been
investigated since the middle of the nineteenth century primar-
ily by lesion reports (Harlow, 1848, 1868; Broca, 1865). However,
hard evidence derivable from functional double dissociations by
prefrontal brain lesions is rare in humans (cf. Gaffan, 2002;
Wilson et al., 2010). Nevertheless, the parts of the prefrontal
cortex are known to be involved in many high-level cognitive
functions, including executive control, action selection, multi-
tasking, social cognition, or general intelligence. These disparate
roles have been parsimoniously explained by different concepts,
including the conjoint consideration of internal subtasks, branch-
ing and reallocation of attention, or balancing between self-
generated and environmental information. Yet, there may be no
common denominator for all functional involvements of the PFC
(Wood and Grafman, 2003; Ramnani and Owen, 2004; Amodio
and Frith, 2006; Burgess et al., 2006; Koechlin and Hyafil, 2007;
Forbes and Grafman, 2010; O’Reilly, 2010).

In contrast, activity changes in medial aspects of the pre-
frontal cortex (mPFC) were frequently related to social cognition,
defined as information processing related to human individuals
as opposed to the physical world. Examples of such functional
involvements include processing affective information (Phan
et al., 2002), forming social judgments (Freeman et al., 2010;
Bzdok et al., 2012b), attributing beliefs (den Ouden et al., 2005),
retrieving social semantic knowledge (Contreras et al., 2012),
and encountering unstable social hierarchies (Zink et al., 2008).
In fact, Mitchell (2009) noted that the core domains of social
psychology converge exclusively in the mPFC, rendering this sci-
entific field naturally coherent rather than an arbitrary outcome
of historical evolution. In social neuroscience, most proposi-
tions for functional specialization of the mPFC relied on the
distinction between a ventral and a dorsal functional compart-
ment. More specifically, ventral versus dorsal mPFC regions
(vmPFC/dmPFC) have been variously proposed to be func-
tionally dissociable according to emotional versus cognitive,
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automatic versus controlled, implicit versus explicit, outcome-
oriented versus goal-oriented, or self-relevant versus other-
relevant social cognition (Amodio and Frith, 2006; Mitchell et al.,
2006; Shamay-Tsoory et al., 2006; Lieberman, 2007; Olsson and
Ochsner, 2008; Van Overwalle, 2009; Forbes and Grafman, 2010).
The diversity of proposed functional dissociations between the
vmPFC and dmPFC illustrates the current lack of consensus.

In the current study, we therefore quantitatively examined the
functional organization of the mPFC along its ventrodorsal axis.
First, the analysis was based on two seed regions in the vmPFC
and dmPFC, respectively. These regions corresponded to loca-
tions showing significant convergence of perspective-taking tasks
in a recent coordinate-based meta-analysis (Bzdok et al., 2012c).
As perspective-taking is probably a uniquely human capacity
(Premack and Woodruff, 1978; Tomasello et al., 2003), these two
clusters of underlying convergent activity are an excellent proxy
for the different functional compartments of the mPFC in human
social cognition in general. Second, we delineated brain-wide
connectivity of each seed according to two complementary mea-
sures of functional connectivity, task-dependent meta-analytic
connectivity modeling (MACM, Eickhoff et al., 2011) and task-
independent resting state correlations (RS, Biswal et al., 1995).
MACM analysis is based on co-activation patterns across a large
number of databased neuroimaging experiments (i.e., brain activ-
ity under task constraints). RS analysis, in turn, is based on
correlations of slow (<0.1 Hz) fluctuations of fMRI signals during
rest (i.e., unconstrained brain activity in the absence of an exter-
nally purported task). Third, we determined a functional profile
for each seed using BrainMap meta-data (Laird et al., 2011) by
complementary forward and reverse functional decoding. This
approach allowed for a cross-validated connectional and func-
tional segregation of the ventral and dorsal mPFC segregation as
involved in social cognition.

METHODS
DEFINITION OF THE SEED REGIONS
We conducted connectivity analyses and functional profiling of
two seed regions in the mPFC that were derived from a recent
coordinate-based meta-analysis (Bzdok et al., 2012c) using the
activation-likelihood estimation (ALE) algorithm (Eickhoff et al.,
2009, 2012; Eickhoff and Bzdok, 2012). This meta-analysis quan-
titatively summarized all neuroimaging experiments related to
perspective-taking published until 2010, in all, 68 experiments
reporting 724 activation foci (Bzdok et al., 2012c). It included
neuroimaging experiments [fMRI and positron emission tomog-
raphy (PET)] in which participants were required to adopt an
intentional stance towards others, that is, predict their thoughts,
intentions, and future actions. It excluded neuroimaging experi-
ments using non-whole-brain analyses, pharmacological manip-
ulations, or psychiatrically/neurologically diagnosed individuals.
More specifically, the two chosen seed regions represent regions
of converging brain activity revealed by the (cluster-level cor-
rected) quantitative meta-analysis of neuroimaging results from
various paradigms that prompt perspective-taking. Please note
that the meta-analyses on empathy and morality, also reported
in that meta-analytic study, did not contribute to our seeds. The
previously published meta-analysis on perspective-taking thus

yielded two continuous, non-overlapping clusters of convergent
brain activity that served as neuroanatomical constraints for
the differential localization of higher social processes in the
mPFC. Put differently, those seeds reflect, first, two topograph-
ically constrained brains areas closely related to social processes
and, second, the widely assumed functional segregation in this
area in the neuroimaging literature on social cognition (e.g.,
Mitchell et al., 2006; Shamay-Tsoory et al., 2006; Van Overwalle,
2009). Each cluster’s whole-brain connectivity pattern was subse-
quently delineated by task-dependent meta-analytic connectivity
modeling and task-independent resting-state analyses. As the
employed meta-analytic seeds naturally have asymmetrical shapes
we repeated all analyses after fusion of the original seeds with
the sagitally mirrored seeds, which yielded virtually identical
results.

TASK-DEPENDENT FUNCTIONAL CONNECTIVITY: MACM
The delineation of whole-brain co-activation maps for each seed
was performed based on the BrainMap database (www.brainmap.

org; Fox and Lancaster, 2002; Laird et al., 2011). We constrained
our analysis to “normal” fMRI and PET experiments (i.e., no
pharmacological interventions, no group comparisons) in healthy
participants, which report whole-brain results as coordinates
in a standard stereotaxic space. These inclusion criteria yielded
∼6500 eligible experiments at the time of analysis. Note that
we considered all eligible BrainMap experiments because any
pre-selection based on taxonomic categories would have con-
stituted a strong a priori hypothesis about how different tasks
etc. involve different brain networks. Yet, it remains elusive how
well psychological constructs, such as emotion and cognition,
map on regional brain responses (Mesulam, 1998; Poldrack, 2006;
Laird et al., 2009a). To reliably determine the co-activation pat-
terns of a given seed, we identified the set of experiments in
BrainMap that reported at least one activation focus within that
seed. The brain-wide co-activation pattern for each seed was
then computed by ALE meta-analysis over (all foci reported in)
the experiments that were associated with that particular seed
(Turkeltaub et al., 2002; Eickhoff et al., 2009; Laird et al., 2009a).
The key idea behind ALE is to treat the foci reported in the asso-
ciated experiments not as single points, but as centers for 3D
Gaussian probability distributions that reflect the spatial uncer-
tainty associated with neuroimaging results. Using the latest ALE
implementation (Eickhoff et al., 2009, 2012; Turkeltaub et al.,
2012), the spatial extent of those Gaussian probability distri-
butions was based on empirical estimates of between-subject
and between-template variance of neuroimaging foci (Eickhoff
et al., 2009). For each experiment, the probability distributions
of all reported foci were then combined into a modeled acti-
vation (MA) map by the recently introduced “non-additive”
approach that prevents local summation effects (Turkeltaub et al.,
2012). The voxel-wise union across the MA maps of all exper-
iments associated with a particular seed voxel then yielded an
ALE score for each voxel of the brain that describes the co-
activation probability of that particular location with the current
seed voxel.

To establish which regions were significantly co-activated with
a particular seed, ALE scores for the MACM analysis of this
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seed were compared to a null-distribution that reflects a ran-
dom spatial association between experiments, but regards the
within-experiment distribution of foci as fixed (Eickhoff et al.,
2009). This random-effects inference assesses above-chance con-
vergence between experiments. The observed ALE scores from the
actual meta-analysis of experiments activating within a particular
seed were then tested against the ALE scores obtained under this
null-distribution yielding a p-value based on the proportion of
equal or higher random values (Eickhoff et al., 2012). The result-
ing p-values were then thresholded at p < 0.05 with cluster-level
family-wise error correction for multiple comparisons (cluster-
forming threshold at voxel-level: p < 0.001).

Differences in co-activation patterns between the seeds were
assessed by first performing MACM separately on the experi-
ments associated with either seed and computing the voxel-wise
difference between the ensuing ALE maps (Eickhoff et al., 2011).
All experiments contributing to either analysis were then pooled
and randomly divided into two groups of the same size as the
two original sets of experiments. That is, if 100 experiments in
BrainMap featured activation in seed A and 75 featured activa-
tion in seed B, the resulting pool of (175) experiments would be
randomly divided into a group of 100 and a group of 75 exper-
iments. ALE-scores for these two randomly assembled groups
were calculated and the difference between these ALE-scores was
recorded for each voxel in the brain. Repeating this process 10,000
times yielded an empirical null-distribution for the differences in
ALE-scores between the MACM analyses of the two seeds. The
observed difference in ALE scores was then tested against this
null-distribution yielding a p-value for the difference at each voxel
based on the proportion of equal or higher random differences.
The resulting non-parametric p-values were thresholded at p >

0.95 and inclusively masked by the respective main effects, i.e., the
already thresholded effects from the MACM analysis of the partic-
ular seed, to focus inference on regions reliably co-activating with
that seed.

TASK-INDEPENDENT FUNCTIONAL CONNECTIVITY: RS CORRELATIONS
Next, seed-wise whole-brain connectivity was assessed using
resting-state correlations as an independent modality of func-
tional connectivity. This analysis was based on RS fMRI data from
139 healthy volunteers (56 female, mean age 42.3 years) without
any record of neurological or psychiatric disorders. This dataset
was obtained through the 1000 Functional Connectomes Project
as part of the NKI/Rockland sample (http://fcon_1000.projects.
nitrc.org/indi/pro/nki.html). Participants were instructed to keep
their eyes closed and just let their mind wander without thinking
of anything in particular but not to fall asleep. For each partici-
pant, 260 RS echo-planar imaging (EPI) volumes were acquired
on a Siemens TimTrio 3T scanner using blood-oxygen-level-
dependent (BOLD) contrast [gradient-echo EPI pulse sequence,
TR = 2.5 s, TE = 30 ms, flip angle = 80◦, in-plane resolution =
3.0 × 3.0 mm2, 38 axial slices (3.0 mm thickness) covering the
entire brain]. The first four scans served as dummy images allow-
ing for magnetic field saturation and were discarded prior to
further processing using SPM8 (www.fil.ion.ucl.ac.uk/spm). The
EPI images were first corrected for head movement by affine
registration using a two-pass procedure. The mean EPI image

for each participant was then spatially normalized to the MNI
single-subject template (Holmes et al., 1998) using the ‘unified
segmentation’ approach (Ashburner and Friston, 2005) and the
ensuing deformation was applied to the individual EPI volumes.
Finally, images were smoothed by a 5-mm FWHM Gaussian ker-
nel to improve signal-to-noise ratio and compensate for residual
anatomical variations.

The time-series data of each individual seed voxel were pro-
cessed as follows (zu Eulenburg et al., 2012; Satterthwaite et al.,
2013): In order to reduce spurious correlations, variance that
could be explained by the following nuisance variables was
removed: (1) The six motion parameters derived from the image
realignment, (2) the first derivative of the realignment parame-
ters, and (3) mean gray-matter, white-matter, and cerebrospinal
fluid signal per time-point as obtained by averaging across voxels
attributed to the respective tissue class in the SPM eight segmen-
tation. All of these nuisance variables entered the model as first-
and second-order terms (Jakobs et al., 2012; Reetz et al., 2012;
Satterthwaite et al., 2013). Data were then band-pass filtered pre-
serving frequencies between 0.01 and 0.08 Hz since meaningful
resting-state correlations will predominantly be found in these
frequencies given that the BOLD response acts as a low-pass filter
(Biswal et al., 1995; Fox and Raichle, 2007).

According to this procedure, time courses were extracted for all
voxels of a given seed of the individual participant and the time
course of the entire seed was then expressed as the first eigen-
variate of its voxels’ time courses. Pearson correlation coefficients
between the time series of the seeds and all other gray-matter vox-
els in the brain were computed to quantify RS connectivity. These
voxel-wise correlation coefficients were then transformed into
Fisher’s Z-scores and tested for consistent deviation from zero
across participants in a random-effects analysis. In particular, the
Fisher’s Z transformed whole-brain connectivity maps of all seeds
were included in an ANOVA accounting for non-sphericity in the
data originating from the fact that the different seeds represented
correlated measures within each subject with unequal variance
between seeds and subjects. Appropriate linear contrasts were
then applied to test for regions significantly connected to the seed
in the ventral and dorsal mPFC, respectively. The results of this
random-effects difference analysis were cluster-level thresholded
at p < 0.05 (cluster-forming threshold at voxel-level: p < 0.001),
analogous to the MACM-based difference analysis.

CONJUNCTION AND DIFFERENCE ANALYSES ACROSS BOTH
CONNECTIVITY MODALITIES
To identify brain areas showing convergent task-dependent and
task-independent functional connectivity with an individual seed,
we performed a conjunction analysis across the MACM- and
RS-derived (cluster-level corrected) connectivity maps using the
strict minimum statistics (Nichols et al., 2005; Jakobs et al.,
2012). Thus, surviving voxels were functionally associated with
a given seed in both task-constrained (“focused”) and task-
unconstrained (“resting”) brain states.

The main focus was, however, on connectivity differences
between the vmPFC and dmPFC seeds. To this aim, we iden-
tified regions with significantly stronger coupling with either
seed across task-dependent and task-independent functional
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connectivity. That is, we computed the conjunction (across both
connectivity modalities) of the contrasts (between seeds) to
determine regions that were more strongly connected to the ven-
tral or dorsal seed across two disparate brain states (Cieslik et al.,
2012; Reetz et al., 2012; Rottschy et al., 2012).

FUNCTIONAL PROFILING OF THE SEEDS
The functional characterization of the two mPFC seeds was based
on the BrainMap meta-data that describe each neuroimaging
experiment included in the database. Behavioral domains code
the mental processes isolated by the statistical contrasts (Fox et al.,
2005) and comprise the main categories cognition, action, per-
ception, emotion, and interoception, as well as their related sub-
categories. Paradigm classes categorize the specific task employed
(Turner and Laird, 2012; for the complete BrainMap taxonomy,
see http://brainmap.org/scribe/).

Forward inference on the functional characterization then
tests the probability of observing activity in a brain region
given knowledge of the psychological process, whereas reverse
inference tests the probability of a psychological process being
present given knowledge of activation in a particular brain region
(Poldrack, 2006; Yarkoni et al., 2011). In the forward infer-
ence approach, a cluster’s functional profile was determined by
identifying taxonomic labels for which the probability of find-
ing activation in the respective cluster was significantly higher
than the overall chance (across the entire database) of finding
activation in that particular cluster. Significance was established
using a binomial test (p < 0.001; Eickhoff et al., 2011). In the
reverse inference approach, a cluster’s functional profile was
determined by identifying the most likely behavioral domains
and paradigm classes given activation in a particular cluster.
Significance was then assessed by means of a chi-square test
(p < 0.001). Base rates for activations in the respective clusters
as well as base rates for tasks were taken into account using
the Bayesian formulation for deriving P(Task|Activation) based
on P(Activation|Task) as well as P(Task) and P(Activation). In
sum, forward inference assesses the probability of activation given
a psychological term, while reverse inference assesses the prob-
ability of a psychological term given activation (Cieslik et al.,
2012; Reetz et al., 2012; Rottschy et al., 2012; Kellermann et al.,
2013).

The contrast analyses between the two seeds’ functional
profiles, in turn, were constrained to those experiments in
BrainMap activating either seed. That is, the task associations
of experiments in this composite pool were quantified in com-
parison between the respective seeds and thresholded at p <

0.05 (false-discovery-rate corrected for multiple comparisons).
Forward inference here compared the activation probabilities
between the two seeds given a particular psychological term,
while reverse inference compared the probabilities of a par-
ticular psychological term being present given activation in
one or the other seed. Please note that the contrast analysis
results were masked with the respective individual functional
decoding results of either seed. Put differently, a psychologi-
cal term can only be significantly more associated with a seeds,
if it was also determined significant in the main effect of
functional decoding of that seed. Finally, conjunction analyses

across the two seeds’ functional profiles tested for significant
associations of each particular psychological term with both
seeds.

Notably, this approach aims at relating defined psychological
tasks to the examined brain regions instead of claiming “a unique
role” of a brain region for any psychological task (Mesulam, 1998;
Poldrack, 2006; Yarkoni et al., 2011). Put differently, an associa-
tion of task X to brain region Y obtained in these analyses does
not necessarily imply that neural activity in region Y is limited to
task X.

RESULTS
FUNCTIONAL CONNECTIVITY: INDIVIDUAL ANALYSES OF SEEDS
We first determined each seed’s (Figure 1) functional con-
nectivity separately by means of both task-dependent MACM
and task-independent RS analyses (Figure 2 and Tables 1, 2).
MACM analysis of the vmPFC seed yielded the bilateral
vmPFC and dmPFC extending into the anterior cingulate cortex
(ACC), amygdala/hippocampus (AM/HC), posterior cingulate
cortex/retrosplenial cortex (PCC/RSC), as well as the left nucleus
accumbens (NAc), temporo-parietal junction (TPJ), superior
frontal gyrus, and posterior operculum (pOP). RS analysis of the
vmPFC seed yielded the bilateral vmPFC and dmPFC extend-
ing into the ACC, AM, HC, NAc, posterior mid-cingulate cortex
(pMCC), RSC/PCC, precuneus (Prec), TPJ, middle temporal
gyrus (MTG), temporal pole (TP), precentral gyrus (PreG), pOP,
and cerebellum (Cer, not depicted) as well as the right postcen-
tral gyrus (PoG). MACM analysis of the dmPFC seed, in turn,

FIGURE 1 | Location of the seed regions. Seeds were drawn from an
earlier coordinate-based neuroimaging meta-analysis on perspective-taking,
which yielded two clusters of convergent brain activity in the ventral (beige)
and dorsal (green) medial prefrontal cortex (Bzdok et al., 2012c). The centers
of mass of the vmPFC and dmPFC seed are −4/52/−2 and −6/56/30,
respectively. These two seeds represent a functional-structural segregation
in the medial prefrontal cortex related to higher social-cognitive processing
and provided the basis for the present quantitative analyses. The seeds
were rendered into a T1-weighted MNI single subject template using mango
(multi-image analysis GUI; http://ric.uthscsa.edu/mango/).
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FIGURE 2 | Functional connectivity of the vmPFC and dmPFC

seeds. Connectivity patterns of each seed as individually determined
using meta-analytic connectivity modeling (MACM) and resting-state
(RS) analyses. The color bars on the bottom represent Z -values. All
results survived a cluster-corrected threshold of p < 0.05. Please refer

to Tables 1, 2 for peak coordinates. All images were rendered
using Caret (computer assisted reconstruction and editing toolkit;
http://brainvis.wustl.edu/wiki/index.php/Caret: About). Cortical sheet
inflation enhances visual intuitiveness and alleviates activation burying
in sulci.

yielded the bilateral vmPFC and dmPFC extending into the ACC,
AM/HC, inferior frontal gyrus (IFG), PCC/RSC, TPJ, and TP, as
well as the left anterior insula (AI) and MTG. RS analysis of the
dmPFC seed yielded the bilateral vmPFC and dmPFC extending
into the ACC, AM, HC, IFG, pMCC, PCC/RSC, Prec, TPJ, MTG,
TP, PreG, PoG, pOP, and Cer (not depicted).

FUNCTIONAL CONNECTIVITY: DIFFERENCE ANALYSES BETWEEN
SEEDS
To subsequently determine which brain areas are more strongly
coupled with one seed than the other seed, we computed
MACM and RS connectivity differences between both seeds
(Figure 3). In MACM analyses, the brain areas more strongly
coupled with the vmPFC than dmPFC comprised the bilat-
eral vmPFC extending into the ACC, HC (extending into the
AM on the right), PCC, and RSC, as well as the left NAc and
pOP. In RS analyses, the brain areas more strongly coupled
with the vmPFC than dmPFC comprised the bilateral vmPFC,
HC, ACC, pMCC, PCC, RSC, Prec, NAc, AI, midbrain/pons,
thalamus, visual cortex, posterior lateral parietal cortex, and
Cer (not depicted). In MACM analyses, the brain areas more
strongly coupled with the dmPFC than vmPFC, in turn, com-
prised the bilateral PCC, IFG, TPJ, and TP, as well as the left
AM and MTG. In RS analyses, the brain areas more strongly
coupled with the dmPFC than vmPFC comprised the bilateral

orbitofrontal cortex, IFG, MTG, TPJ, TP, PreG, PoG, and Cer (not
depicted).

FUNCTIONAL CONNECTIVITY: CROSS-VALIDATION BY CONJUNCTION
ANALYSES
The main goal of our study was the functional connectivity of
each seed that is consistent across both types of connectivity
analysis (i.e., MACM and RS). Convergence of both approaches
should reveal connectivity that is consistently observed across
two different states of brain function, that is, during specific task
performance (MACM) and in the absence of an externally struc-
tured task (RS). To thus test for brain areas congruently connected
to either seed across both types of connectivity, we computed
the conjunction across the respective MACM and RS analyses
(Figure 2 and Tables 1, 2). These conjunction analyses of each
seed revealed the same set of brain areas as the respective MACM
analysis, except for absent vmPFC connectivity to the operculum.

To test for brain areas more strongly coupled with either seed
across MACM and RS analyses, we computed the conjunction
across the respective MACM- and RS-based difference analyses
(Figure 4, Table 3). Across MACM and RS, brain areas con-
gruently more strongly coupled with the vmPFC than dmPFC
comprised the bilateral vmPFC extending into the ACC, HC,
PCC, and RSC, as well as the left NAc. Across MACM and RS,
brain areas congruently more strongly coupled with the dmPFC
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Table 1 | Functional connectivity of the vmPFC seed.

Macroanatomical location x y z Z

MACM(vmPFC)

Ventromedial prefrontal cortex 0 52 −8 8.7

Dorsomedial prefrontal cortex −12 48 24 3.7

Right amygdala/hippocampus 24 −6 −20 6.8

Left amygdala/hippocampus −22 −14 −18 7.4

Left nucleus accumbens −8 14 −6 5.8

Posterior cingulate cortex 0 −42 36 5.6

Retrosplenial cortex −2 −52 30 6.7

Left temporo−parietal junction −48 −66 28 5.9

Left superior frontal gyrus −18 38 46 4.5

Left posterior operculum −60 −28 18 6.7

RS(vmPFC)

Ventromedial prefrontal cortex −2 50 −10 31.9

Dorsomedial prefrontal cortex 0 51 17 17.6

Right amygdala 19 −1 −20 6.7

Left amygdale −16 −1 −21 6.6

Right hippocampus 24 −20 −20 15.0

Left hippocampus −30 −30 −12 12.9

Right nucleus accumbens 7 13 −11 12.1

Left nucleus accumbens −4 12 −11 12.7

Posterior mid−cingulate cortex 2 −17 39 15.0

Posterior cingulate cortex −2 −44 30 21.9

Retrosplenial cortex 6 −50 22 22.5

Precuneus 3 −70 63 15.6

Right temporo−parietal junction 46 −68 28 14.0

Left temporo−parietal junction −48 −68 38 14.6

Right middle temporal gyrus 62 −6 −24 14.8

Left middle temporal gyrus −66 −14 −24 14.9

Right temporal pole 42 20 −34 9.0

Left temporal pole −44 22 −40 8.4

Right precentral gyrus 34 −26 48 8.6

Left precentral gyrus −36 −24 54 6.9

Right postcentral gyrus 38 −30 54 7.6

Right posterior operculum 38 −22 18 6.6

Left posterior operculum −44 −18 18 5.4

Right cerebellum 52 −66 −42 9.5

Right cerebellum 6 −54 −46 11.4

Left cerebellum −36 −78 −38 9.5

Left cerebellum −6 −56 −46 10.1

MACM and RS(vmPFC)

Ventromedial prefrontal cortex 0 52 −8 8.7

Dorsomedial prefrontal cortex −18 38 46 4.5

Right amygdala/hippocampus 24 −8 −20 6.6

Left amygdala/hippocampus −22 −14 −18 7.4

Left nucleus accumbens −8 14 −6 5.8

Posterior cingulate cortex 0 −42 36 5.6

Retrosplenial cortex −2 −52 30 6.7

Left temporo−parietal junction −48 −66 28 5.9

Left superior frontal gyrus −18 38 46 4.5

Table shows coordinates derived from respective cluster peaks (x, y, z) and

Z-scores (Z).

Table 2 | Functional connectivity of the dmPFC seed.

Macroanatomical location x y z Z

MACM(dmPFC)

Ventromedial prefrontal cortex −4 48 −12 7.5

Dorsomedial prefrontal cortex 2 56 24 8.7

Right amygdala/hippocampus 20 −4 −16 5.5

Left amygdala/hippocampus −22 −6 −18 6.9

Right inferior frontal gyrus 42 26 −7 4.2

Left inferior frontal gyrus −48 26 −6 8

Left anterior insula −32 24 −2 4.2

Posterior cingulate cortex −4 −48 32 8.4

Retrosplenial cortex −6 −56 8 5.1

Right temporo-parietal junction 54 −70 20 6.4

Left temporo-parietal junction −52 −68 16 7.0

Left middle temporal gyrus −60 −36 2 5.5

Right temporal pole 40 16 −20 4.4

Left temporal pole −36 20 −24 4.5

RS(dmPFC)

Ventromedial prefrontal cortex 3 43 −23 17.7

Dorsomedial prefrontal cortex −8 56 28 26.7

Right amygdala 18 −6 −20 5.0

Left amygdale −20 −4 −20 7.8

Right hippocampus 26 −18 −22 7.7

Left hippocampus −26 −20 −18 10.0

Right inferior frontal gyrus 38 30 −18 10.1

Left inferior frontal gyrus −56 29 3 9.3

Posterior mid-cingulate cortex −2 −16 38 14.8

Posterior cingulate cortex −4 −46 34 21.5

Retrosplenial cortex 6 −50 24 17.8

Precuneus −1 −64 33 15

Right temporo-parietal junction 54 −66 26 14.3

Left temporo-parietal junction −52 −60 26 18.3

Right middle temporal gyrus 62 −6 −26 15.7

Left middle temporal gyrus −66 −8 −22 16.7

Right temporal pole 46 14 −36 13.1

Left temporal pole −52 10 −38 13.9

Right precentral gyrus 32 −28 50 9.7

Left precentral gyrus −30 −28 58 8

Right postcentral gyrus 36 −32 56 8.7

Left postcentral gyrus −28 −30 52 7.1

Right posterior operculum 39 −21 20 6.5

Left posterior operculum −40 −21 22 4.1

Right cerebellum 32 −80 −38 16.5

Left cerebellum −34 −80 −38 16.0

Right cerebellum 8 −54 −42 13

Left cerebellum −6 −56 −44 11.2

MACM and RS(dmPFC)

Ventromedial prefrontal cortex −4 48 −12 7.5

Dorsomedial prefrontal cortex 2 56 24 8.7

Right amygdala/hippocampus 20 −4 −18 5.3

Left amygdala/hippocampus −20 −6 −18 6.5

Right inferior frontal gyrus 44 26 −12 4.1

Left inferior frontal gyrus −48 28 −6 8

Left anterior insula −36 20 −24 4.5

(Continued)
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Table 2 | Continued

Macroanatomical location x y z Z

Posterior cingulate cortex −4 −36 40 3.3

Retrosplenial cortex −6 −56 8 5.1

Right temporo-parietal junction 54 −70 20 6.4

Left temporo-parietal junction −46 −74 36 6.9

Left middle temporal gyrus −62 −36 2 5.2

Right temporal pole 36 18 −20 3.6

Left temporal pole −36 20 −24 4.5

Table shows coordinates derived from respective cluster peaks (x, y, z) and

Z-scores (Z).

than vmPFC comprised the bilateral dmPFC, IFG, and TPJ, as
well as the left MTG.

Finally, the brain areas congruently coupled with the vmPFC
and dmPFC across both MACM and RS analyses comprised the
bilateral vmPFC, frontal pole, AM/HC, and PCC/RSC, as well as
the left dmPFC and TPJ.

FUNCTIONAL PROFILING OF THE SEEDS
After the characterization using connectivity analyses, we also
conducted a functional characterization of the vmPFC and
dmPFC seeds by determining their significant associations with
BrainMap taxonomic categories (Figure 5). For robustness, we
focused on taxonomic associations that are significant in both
the forward and reverse inference analysis. Forward inference
derives brain activity from a psychological term, whereas reverse
inference derives a psychological term from brain activity (see
Methods section). Accordingly, activity increases in the vmPFC
were consistently associated with tasks related to general cogni-
tion, social cognition, as well as emotion and reward processing.
Note that BrainMap experiments are labeled as related to general
cognition mostly if they do not fit into any of the more specific
categories. Activity increases in the dmPFC were consistently
associated with tasks related to social cognition, theory of mind
(i.e., perspective-taking), episodic memory retrieval, as well as
processing emotion, also when derived from faces. Note that
BrainMap experiments labeled as related to “Episodic Recall” are
very likely to be also labeled as “Cognition.Memory.Explicit” ren-
dering these two taxonomic subcategories highly inter-related.
When quantifying the taxonomic associations of the seeds relative
to each other, the vmPFC (versus dmPFC) was more consistently
associated with reward processing and general cognition, while
the dmPFC (versus vmPFC) was more consistently associated
with (episodic) memory retrieval and theory-of-mind process-
ing. Finally, the taxonomic associations consistent across both
vmPFC and dmPFC comprised tasks related to social, emotional,
and facial (i.e., “Subjective Emotional Picture Discrimination”)
processing.

DISCUSSION
We examined the widely assumed but not directly tested ven-
trodorsal differentiation of the mPFC in social cognition. This
test of segregation was based on a ventral and dorsal mPFC
region that are both consistently related to perspective-taking

as a prototypical instance of social cognition. The seeds were
analyzed using two ways of functional connectivity analyses by
independently delineating task-related meta-analytic connectiv-
ity modeling (MACM, Eickhoff et al., 2011) and task-unrelated
resting-state correlations (RS, Biswal et al., 1995). Additionally,
it was tested whether the seeds were differentially associated
with psychological terms from BrainMap meta-data using for-
ward and reverse inference. In both MACM and RS analy-
ses, the vmPFC was more strongly connected with the nucleus
accumbens (NAc), hippocampus (HC), posterior cingulate cor-
tex (PCC), and retrosplenial cortex (RSC), while the dmPFC
was more strongly connected with the inferior frontal gyrus
(IFG), temporo-parietal junction (TPJ), and middle temporal
gyrus (MTG). In both functional decoding analyses, the vmPFC
was selectively associated with reward related tasks, while the
dmPFC was selectively associated with perspective-taking and
episodic memory retrieval tasks. Importantly, both vmPFC and
dmPFC were functionally associated with social, emotional, and
facial processing. In sum, the vmPFC was thus more closely
connected to limbic and reward-related medial brain areas as
well as functionally associated with processing approach- and
avoidance-relevant stimuli. In contrast, the dmPFC was more
connected to higher associative cortical areas as well as func-
tionally associated with processing mental states and episodic
memory.

CONNECTIONAL EVIDENCE FOR THE SEGREGATION BETWEEN THE
vmPFC AND dmPFC
Our convergent connectivity results across MACM and RS anal-
yses derived from the vmPFC and dmPFC seeds agree well with
many earlier findings in humans and monkeys. Importantly, the
vmPFC and dmPFC have been found to be extensively inter-
connected in axonal tracing studies in monkeys (Barbas et al.,
1999; Saleem et al., 2008), consistent with our results. In the
following, we will compare the present connectivity differences
between the vmPFC and dmPFC with earlier findings using other
connectivity measures in humans and monkeys.

The vmPFC, on the one hand, was more strongly connected
to the NAc, HC, PCC, and RSC across two different types of
functional connectivity analysis in the present study. Indeed, the
vmPFC, but not dmPFC, has been observed to have monosynap-
tical connections with the ventral striatum (VS, which anatom-
ically includes the NAc) in axonal tracing studies in monkeys
(Haber et al., 1995; Ferry et al., 2000). This is consistent with
our results and probabilistic diffusion tensor imaging (DTI) trac-
tography in humans and monkeys (Croxson et al., 2005) that
quantified the VS to be substantially more likely connected to the
vmPFC than dmPFC in both species. This DTI study further esti-
mated the vmPFC to be only slightly more connected to the amyg-
dala (AM) than the dmPFC in monkeys and humans (cf. Bzdok
et al., 2012a), in line with the present AM connectivity to both
vmPFC and dmPFC. Importantly, roughly balanced connectiv-
ity to the AM challenges the frequently proposed vmPFC-dmPFC
distinction as emotional versus cognitive. Although monkey trac-
ing studies indicated that the entire medial wall of the prefrontal
cortex has amygdalar and cingulate connections, the most ven-
tral part of the mPFC received strongest connections from most
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FIGURE 3 | Functional connectivity differences between the vmPFC

and dmPFC seeds. Connectivity differences between the seeds
individually determined using meta-analytic connectivity modeling (MACM)

and resting-state (RS) analyses. The color bars on the bottom represent
Z -values. All images were rendered using Caret. Coordinates in MNI
space.

limbic areas, including the HC (Carmichael and Price, 1995).
This concurs with our results and a RS connectivity analysis of
the human HC showing more correlation with the vmPFC than
dmPFC (Vincent et al., 2006). Additionally, fibers from the medial
temporal lobe (including the AM and HC) entered the mostly
ventral medial partial cortex, including the RSC, as observed
using DTI tractography in humans (Greicius et al., 2009). Our
results are in line with monkey tracing studies showing that
mostly the vmPFC but also dmPFC are directly connected to the
PCC (Carmichael and Price, 1995) and RSC (Vann et al., 2009).
Conversely, the PCC and RSC (but not the more dorsocaudal pre-
cuneus) were mostly connected to limbic regions and the vmPFC
in a comparative RS study in monkeys and humans (Margulies
et al., 2009). Concluding from previous and present connectiv-
ity findings, the vmPFC is preferentially connected with limbic and
reward-related medial brain areas.

The dmPFC, on the other hand, was more strongly connected
to the TPJ, MTG, and IFG across two different types of functional
connectivity analysis in the present study. Using DTI tractogra-
phy in humans the vmPFC and dmPFC have been observed to be

connected to the TPJ, which in turn was connected to the MTG
(Caspers et al., 2011). Although we also found convergent func-
tional connectivity of the vmPFC and especially dmPFC to the
TPJ, monosynaptical connections from the anterior prefrontal
cortex to the TPJ might be absent in monkeys (for discussion,
see Caspers et al., 2011). Existence of mPFC-TPJ connectivity in
humans is supported by the present results, while our method-
ological approach cannot distinguish mono- and polysynaptical
connections. Our results therefore cannot contribute to the more
general question whether direct mPFC-TPJ connections exist in
humans but not monkeys. The TPJ and IFG, both relatively more
connected to the dmPFC in our study, were also reported to
be connected in an axonal tracing study in monkeys (Petrides
and Pandya, 2009) and in a DTI study in humans (Frey et al.,
2008). Both the vmPFC and dmPFC are further known to have
direct connections with the IFG and MTG based on monkey
tracing data (Yeterian et al., 2012). In contrast, those two target
areas were more strongly connected to the dmPFC in our func-
tional connectivity analyses. Thus, axonal connections between
the vmPFC and the IFG and MTG presumably existing in humans
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FIGURE 4 | Difference and conjunction analyses based on congruent

functional connectivity of the vmPFC and dmPFC seeds. Depicts sagittal
and coronal brain slices of areas consistently more strongly coupled (left and
middle column) with either seed or congruently coupled with both seeds
(right column) across meta-analytic connectivity modeling (MACM) and

resting-state (RS) analyses. Please refer to Table 3 for activation coordinates.
All slices were created using mango (multi-image analysis GUI;
http://ric.uthscsa.edu/mango/) on a T1-weighted MNI single subject template.
Coordinates in MNI space. </>, difference analysis; &, conjunction analysis;
R, right; L, left.
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Table 3 | Difference and conjunction analyses between functional

connectivity of the vmPFC and dmPFC seeds.

Macroanatomical location x y z Z

MACM & RS (vmPFC > dmPFC)

Ventromedial prefrontal cortex 2 44 −18 8.1

Right hippocampus 30 −10 −22 3.0

Left hippocampus −20 −14 −18 2.7

Left nucleus accumbens −8 18 −4 4.6

Posterior cingulate cortex 4 −38 38 3.2

Retrosplenial cortex 2 −46 18 2.3

Retrosplenial cortex −12 −58 16 2.9

MACM & RS (vmPFC < dmPFC)

Dorsomedial prefrontal cortex 2 58 12 8.1

Right inferior frontal gyrus 52 28 0 2.1

Left inferior frontal gyrus −42 40 −10 3.4

Left inferior frontal gyrus −50 28 18 3.3

Right temporo-parietal junction 56 −54 26 3.8

Left temporo-parietal junction −50 −52 30 3.0

Left temporo-parietal junction −50 −56 10 2.5

Left middle temporal gyrus −60 −22 −8 3.7

MACM & RS (vmPFC & dmPFC)

Ventromedial prefrontal cortex −4 48 −12 7.5

Frontal pole −4 56 2 8.4

Left dorsomedial prefrontal cortex −18 38 46 4.5

Right amygdala/hippocampus 20 −4 −18 5.3

Left amygdala/hippocampus −24 −12 −20 5.8

Posterior cingulate cortex/retrosplenial cortex −2 −52 30 6.7

Left temporo-parietal junction −48 −66 28 6.0

Table shows coordinates derived from respective cluster peaks (x, y, z) and

Z-scores (Z). < and > denote difference analyses, while & denotes conjunction

analysis.

might be less important for social-cognitive processing than those
of the dmPFC. Similarly, although DTI tractography in humans
(Greicius et al., 2009) and axonal tracing in monkeys (Cavada
and Goldman-Rakic, 1989) have identified fiber bundles con-
necting the dmPFC with the more dorsal and posterior medial
parietal cortex (precuneus), this was not reflected by our func-
tional connectivity results. Concluding from previous and present
connectivity findings, the dmPFC is preferentially connected with
high association and heteromodal cortical areas of the lateral frontal,
temporal, and parietal lobe. More globally, most of the present
functional connectivity findings of the human vmPFC and dmPFC
concur very well with knowledge describing structural connectiv-
ity in the monkey and human brain. However, our results also
show that known axonal connections between the mPFC and
other parts of the brain are not always reflected in functional
connectivity analyses.

INTEGRATIVE SEGREGATION BETWEEN THE vmPFC AND dmPFC
After discussing the connectivity differences between the vmPFC
and dmPFC, we will now discuss the previously proposed func-
tional properties of their respective connectivity targets (cf.
Fuster, 2001). The vmPFC was more connected to the NAc,
HC, PCC, and RSC. The NAc is thought to be linked to

reward mechanisms that may not only modulate motivated
behavior towards basic survival needs, such as food and sex,
but also towards salient social cues (cf. Kampe et al., 2001;
Cardinal et al., 2002; Walter et al., 2005; Schilbach et al., 2010).
Neuroimaging research indeed ascribed complex reward func-
tions to the NAc, such as the evaluation of reward expectancy in
social, monetary, or drug rewards (Schultz et al., 1997; Kampe
et al., 2001; Rademacher et al., 2010; Bzdok et al., 2011).
The HC, in turn, is well known to be involved in memory
and spatial navigation in animals and humans (von Bechterew,
1900; Scoville and Milner, 1957; O’Keefe and Dostrovsky, 1971;
Maguire et al., 2000). As to the PCC and RSC, electrophys-
iological research in animals implicated the PCC in strategic
selection (Pearson et al., 2009), risk assessment (McCoy and
Platt, 2005), and outcome-contingent behavioral modulation
(Hayden et al., 2008), while the RSC was implicated in nav-
igation and approach-avoidance behavior (Vann et al., 2009).
Considering only the previously reported functional proper-
ties of the here more strongly connected nodes, the vmPFC
can be assumed to integrate a subnetwork (i.e., the brain areas
relatively more connect to the vmPFC, excluding the vmPFC
seed itself) modulating online approach-avoidance behavior by
memory-informed reward and risk estimation of self-relevant
environmental stimuli.

In contrast, the dmPFC was more connected to the IFG, TPJ,
and MTG. As these subnetwork nodes (i.e., the brain areas rel-
atively more connected to the dmPFC, excluding the dmPFC
seed itself) are highly associative and heteromodal, there is less
clarity and agreement about their discrete functional contribu-
tions. As a side note, the mere difference in the association
level between the vmPFC’s and dmPFC’s subnetworks already
indicates functional segregation (Mesulam, 1998). Moreover, the
entire set of dmPFC-linked regions is well known to concomi-
tantly increase and decrease metabolic activity as a cohesive unit,
as lateral components of the so-called “default mode network”
(Gusnard et al., 2001; Laird et al., 2009b; Spreng et al., 2009;
Mar, 2011; Bzdok et al., 2012c; Schilbach et al., 2012). In fact,
it is interesting to note that the vmPFC is more strongly con-
nected to medial components of the default mode network (i.e.,
HC, PCC, RSC), whereas the dmPFC is more strongly con-
nected to its lateral components (i.e., IFG, TPJ, and MTG). This
dmPFC subnetwork was repeatedly related to self-focused reflec-
tion (Andrews-Hanna et al., 2010), contemplation of others’
(Mar, 2011) and one’s own (Lombardo et al., 2009) mental states,
mental navigation of the body in space (Maguire et al., 1997),
semantic processing (Binder et al., 2009), as well as scene con-
struction processes when envisioning past, fictitious, and future
events (Hassabis et al., 2007; Spreng et al., 2009; Bzdok et al.,
2013). Interestingly, the neuroimaging studies related to process-
ing semantic information (Binder et al., 2009), autobiograph-
ical (Spreng et al., 2009) and fictitious (Hassabis et al., 2007)
events observed neural activity increases in both the vmPFC
and dmPFC, although the respective neural networks resem-
ble much more the dmPFC (rather than vmPFC) subnetwork.
The conjunction of previous and present findings suggests that
the dmPFC integrates a network involved in self- or other-
related, largely sensory-independent, highly abstract (hence, less
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FIGURE 5 | Functional profiling of the vmPFC and dmPFC seeds.

Significant associations with psychological terms (behavioral domains
and paradigm classes) from BrainMap meta-data. Functional profiling
was performed as individual, difference, and conjunction analysis.
Forward inference determines above-chance brain activity given the

presence of a psychological term, while reverse inference determines
the above-chance probability of a psychological term given observed
brain activity. The base rate denotes the general probability of finding
BrainMap activation in the seed. The x-axis indicates relative
probability values.

tangible) processes across time, space, and content domains.
Importantly, the previously proposed vmPFC-dmPFC distinc-
tion as outcome-oriented versus goal-oriented is challenged by
our results that support outcome-oriented vmPFC processing
but not specifically goal-oriented dmPFC processing. It is also
important to note that both the vmPFC and dmPFC are closely
related to memory retrieval as indicated by converging func-
tional connectivity (across MACM and RS) to the HC. However,
the memory-retrieved information appears to be bound with
less complex neural processes in the vmPFC versus dmPFC as
indicated by functional association with, for instance, less com-
plex reward processes versus more complex perspective-taking
processes.

Additionally, the here identified subnetworks belonging to
the vmPFC and dmPFC corroborate an earlier hierarchical

clustering analysis based on an fMRI study (Andrews-Hanna
et al., 2010). In particular, seed regions were derived from
comparing future versus present self-related thinking in bidi-
rectional fMRI contrasts. Subsequent resting-state analyses of
these seed regions allowed clustering into a vmPFC-associated
subnetwork, including the HC and PCC/RSC, and a dmPFC-
associated subnetwork, including the TPJ and MTG. The
fMRI data then related, respectively the vmPFC and dmPFC
subnetworks to thinking about present and future self, in
line with our functional decoding results. Put differently,
the vmPFC might be more closely associated with orches-
trating adapted behavior by bottom-up-driven processing of
“what matters now”, which might be top-down modulated
by more dmPFC subserved higher reflective and hypothetical
processing.
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MORPHOLOGICAL EVIDENCE FOR THE SEGREGATION BETWEEN THE
vmPFC AND dmPFC
It may be instructive to acknowledge the relationship between
the present findings on social cognition in mPFC subregions
and the recently increasing evidence for the “social brain” that
might have coevolved with the complexity of social relation-
ships (Jolly, 1966; Humphrey, 1978; Byrne and Whiten, 1988;
Dunbar, 1998; Dunbar and Shultz, 2007). Most importantly,
independent whole-brain analyses from structural neuroimaging
studies related the gray-matter volume (GMV) of the vmPFC
to indices of social competence and social network complex-
ity in both humans and monkeys (Lebreton et al., 2009; Powell
et al., 2010; Lewis et al., 2011; Sallet et al., 2011). To our knowl-
edge, none of these four correlations have been found yet for
the dmPFC. Consequently, vmPFC, rather than dmPFC, anatomy
appears to predict an individual’s social behavioral dispositions
and social network properties, although we found both regions
to be congruently associated with social, emotional, and facial
processing.

Such brain-behavior correlations in humans were also shown
for the brain areas preferentially connected to the vmPFC or
dmPFC in the present analysis. As to the vmPFC subnetwork,
the GMV of the vmPFC and VS correlated with indices of social
reward attitudes and behavior (Lebreton et al., 2009), concur-
ring with vmPFC’s relation to the NAc and reward-related tasks.
Additionally, the GMV of the entorhinal cortex (connectionally
and functionally closely coupled with the HC) correlated with
social network size (Kanai et al., 2012), concurring with vmPFC’s
connectivity to the HC. Further, vmPFC and PCC/Prec GMV cor-
related with social network size (Lewis et al., 2011), concurring
with vmPFC’s stronger connectivity to the PCC. As to the dmPFC
subnetwork, the GMV of the TPJ and MTG correlated with social
network size (Kanai et al., 2012), while the GMV of the TPJ and
IFG correlated with perspective-taking competence (Lewis et al.,
2011). Moreover, the GMV of the amygdala, connected to both
vmPFC and dmPFC, correlated negatively with social phobia (Irle
et al., 2010) and positively with social network size (Bickart et al.,
2010).

The conjunction of these recent brain-behavior correlations
and the present results allow several conclusions. With respect
to our seeds, inter-individual differences in social skills or social
networks were most often related to morphological differences
in the human and monkey vmPFC, in stark contrast to the
dmPFC. With respect to the seeds’ subnetworks, the reported
brain-behavior correlations were roughly equally related to the
more vmPFC or dmPFC connected brain areas. With respect to
the type of social variable, morphological differences related to
either social skills or networks do not seem to be preferentially
associated with the more vmPFC or dmPFC connected brain
areas.

The conclusions prompt the hypothesis that the dmPFC
subserves a domain-independent neural process impor-
tant for, but not specific to, social cognition. Indeed, the
present results support the dmPFC’s possible involvement
in domain-overarching computational mechanisms given its
connections to highly associative brain areas and function-
ally relation to different complex psychological processes.

Although vmPFC and dmPFC were associated with social,
emotional, and facial processing, the dmPFC probably
processes these types of information on a higher level of
abstraction.

NEUROPSYCHOLOGICAL EVIDENCE FOR THE SEGREGATION BETWEEN
THE vmPFC AND dmPFC
The conclusions derived from our findings are corroborated by
brain lesion data. Consistent with the functional association of
the vmPFC with reward processing as well as with a role in
predominantly self-related behavior guided by stimulus evalua-
tion and reward-learning, a voxel-based lesion-symptom map-
ping (VLSM) study in 344 neurological patients demonstrated
functional-anatomical specificity of the vmPFC for value-based
decision-making (Gläscher et al., 2012). However, vmPFC dam-
age in humans also impairs an array of predominantly other-
related socio-emotional processes. More specifically, consistent
with vmPFC’s connectivity to both the limbic system and the
dmPFC, vmPFC lesions appear to impair the integration of
(other-related) higher social, basic emotional, and facial pro-
cesses, rather than any of these three classes of neural processes
per se (Bzdok et al., 2012b). This is indicated by (1) disrupted
emotion recognition from faces (Hornak et al., 1996) despite
intact face recognition (Shamay-Tsoory et al., 2005; Monte et al.,
2012), (2) sociopathic behavior in every-day life (Blair and
Cipolotti, 2000) despite intact abstract reflection of social phe-
nomena (Saver and Damasio, 1991; Damasio, 1996; Young et al.,
2010), (3) disrupted affective but not cognitive perspective-taking
(Stone et al., 1998; Stuss et al., 2001; Shamay-Tsoory et al.,
2006; Shamay-Tsoory and Aharon-Peretz, 2007), (4) disrupted
perspective-taking-based empathy despite intact simpler affective
empathy (Shamay-Tsoory et al., 2009), and (5) reduced emotional
impact on moral judgments (Koenigs et al., 2007; Young et al.,
2010).

Put differently, vmPFC lesion might alter the subset of abstract
social processes that require vmPFC-mediated relay of emotional
limbic information to the dmPFC, consistent with our connec-
tional and functional results. Indeed, faux detection (i.e., abstract
social processing involving emotion processing) is impaired
after damage to either the amygdalae (Stone et al., 2003) or
the vmPFC (Gregory et al., 2002). The conjunction of previ-
ous lesion reports and present results therefore suggests that
the vmPFC interweaves more emotional processes (mainly sub-
served by the limbic system) and more ambiguous social thought
(probably subserved by the dmPFC) to shape self- and other-
related behavioral responses to sensory events in social cog-
nition (Shamay-Tsoory and Aharon-Peretz, 2007; Bzdok et al.,
2012b).

Juxtaposing the effects of vmPFC and dmPFC lesions in
humans is impeded by the scarcity of circumscribed dmPFC
lesions (cf. Mochizuki and Saito, 1990; Duffy and Campbell,
1994; Wilson et al., 2010). Although quite heterogeneous, the
few available dmPFC-linked lesion findings consolidate the
here derived segregation within the mPFC as a function of
reliance on bottom-up versus top-down processing pathways.
First, the dmPFC subnetwork was normally recruited in con-
genitally blind individuals engaged in perspective-taking (Bedny
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et al., 2009). Therefore, complete lack of visual input does
not appear to alter functioning of this high-level area, con-
trarily to low-level visual cortices. Second, a VLSM study on
disturbed sleep (i.e., a state of mind independent of sensory
stimulation but dependent on internally generated informa-
tion) exclusively identified the dmPFC (Koenigs et al., 2010).
Third, another VLSM study exclusively related the IFG and
TPJ, both more strongly connected to the dmPFC in our
study, to inner speech (Geva et al., 2011). Taken together,
in individuals with an intact central nervous system, the
vmPFC versus dmPFC are probably involved in predomi-
nantly bottom-up versus top-down mediated processing of social
information.

NEUROIMAGING EVIDENCE FOR THE SEGREGATION BETWEEN THE
vmPFC AND dmPFC
Following the observed functional associations with fear and
reward, the vmPFC is likely to process not only external but
also visceral stimuli. Indeed, measurements of task-induced brain
activity changes in humans confirm our functional decoding
results by relating the vmPFC to monitoring others’ (Lotze et al.,
2007) and one’s own (Lane et al., 1997; Phan et al., 2004)
emotional responses, that is, other’s (external) emotional reac-
tions and one’s own (visceral) arousal. Such real or imagined
bodily states, believed to be represented in the vmPFC, proba-
bly operate as a bioregulatory disposition governing cognition
and decision making (Damasio, 1996; Nauta, 1971), in line
with the vmPFC’s functional association with general cognition
and reward processing. An fMRI study, for instance, reported
specific vmPFC activity increases during other-initiated joint
attention, suggesting representation of the motivational signifi-
cance of social cues (Schilbach et al., 2010). Consistent with our
line of interpretation, vmPFC versus dmPFC activity was more-
over shown to reflect actually choice-relevant versus modeled,
choice-irrelevant value in a computational fMRI study (Nicolle
et al., 2012). The conjunction of previous functional neuroimag-
ing findings and our functional profiling data consolidate the
vmPFC’s role in processing self- and other-related visceroaffec-
tive and motivational information as a guide in ongoing social
behavior.

Moreover, the vmPFC and dmPFC were both significantly
associated with social, emotional, and facial processing in the
present study. This indicates that the vmPFC and dmPFC are
not functionally dissociable by selective involvement in social,
emotional, or facial processing, although this is frequently pro-
posed. However, the dmPFC, but not vmPFC, was congruently
associated with more complex social-cognitive tasks across for-
ward and reverse functional decoding, including perspective-
taking and episodic memory retrieval. While the former imposes
an other-focused mind set, the latter inherently entails a self-
focused mind set (obviously, one can only recall scenes from
one’s own personal experience). Quantitative functional pro-
filing of the dmPFC therefore indicates that the dmPFC is
involved in both self- and other-oriented processing, analogous
to the vmPFC. Importantly, the frequently proposed vmPFC-
dmPFC distinction as self versus other is challenged by our
conclusions.

In particular, consistent with present functional decoding,
neural activity in the dmPFC, rather than vmPFC, has been con-
sistently interpreted to underlie inference, representation, and
assessment of one’s own and others’ mental states in functional
neuroimaging research (Gusnard et al., 2001; Gallagher and Frith,
2003; Amodio and Frith, 2006; Gilbert et al., 2006; Ochsner,
2008; Van Overwalle, 2009; Bzdok et al., 2012b; Moran et al.,
2012). For instance, dmPFC (but not vmPFC) activity was related
to the proficiency decline of mental state inference in elderly
(Moran et al., 2012), cognitive regulation of one’s own emotional
states (Ochsner et al., 2004b) and inference of another person’s
emotional states (Ochsner et al., 2004a), as well as self-reported
(Wagner et al., 2011) and experimentally measured (Zaki et al.,
2009) proficiency in emotional state inference. Notably, such self-
and other-related conceptualizations cannot be made based on
sensory information or general knowledge about the physical
world (cf. Premack and Woodruff, 1978; Leslie, 1987; Carruthers,
2009). Thus, mental state inference necessarily relies on the
generation of probabilistic internal information. Supported by
dmPFC’s functional association with episodic memory retrieval,
such prima vista non-mnemonic construction processes are likely
to be subserved by the neural network underlying retrieval of
past and imagination of future scenes as indicated by recent neu-
roimaging experiments and meta-analyses (Schacter et al., 2007;
Spreng et al., 2009; Andrews-Hanna et al., 2010; Rabin et al.,
2010; Bzdok et al., 2012c). Constructing such probabilistic scenes
is further believed to necessarily drawn on semantic knowledge
retrieval (Binder et al., 1999; Bar, 2007; Suddendorf and Corballis,
2007; Carruthers, 2009; Bzdok et al., 2012c). This would be in
line with left lateralization of the dmPFC subnetwork typical
of semantic processing (Binder et al., 2009). The conjunction
of previous functional neuroimaging findings and present neu-
roinformatic findings congruently characterizes the dmPFC as
a “mental sketchpad” (Goldman-Rakic, 1996) potentially impli-
cated in modeling and binding plausible self- and other-related
scenarios instructed by semantic concepts in social cognition.
Again, such sensory-independent de novo generation of mean-
ing representations can only be expected from highly associative,
integrative brain areas such as those of the dmPFC subnetwork
(Mesulam, 1998), as opposed to the vmPFC subnetwork.

CONCLUSION
Although the human mPFC is neither uniquely nor solely devoted
to social cognition, its central role in navigating the interper-
sonal space is probably one of the most often replicated findings
in functional neuroimaging research. However, the strength of
cognitive neuroscience comes from investigating an identical
phenomenon from various conceptual and methodological per-
spectives (cf. Feyerabend, 1975). We therefore re-examined the
widely assumed ventrodorsal functional segregation of the mPFC
in social cognition in a bottom-up approach and integrated the
ensuing results with different literatures. As a result of this,
we comprehensively characterized both the vmPFC and dmPFC
as relevant for self- and other-focused as well as social, emo-
tional, and facial processing. More specifically, the vmPFC sub-
serves predominantly non-ambiguous subjective-value-related
evaluative processes driven by bottom-up pathways, whereas the

Frontiers in Human Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 232 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Bzdok et al. Segregating medial prefrontal social processing

dmPFC subserves predominantly ambiguous amodal metacogni-
tive processes driven by top-down pathways. These conclusions
amend a number of earlier accounts on the division of labor
between ventral and dorsal aspects of the mPFC in social cog-
nition. Ultimately, the integration of external stimulation and
internal generation driven processes in the mPFC is a part of what
determines social behavior.
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