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DRecent progress in functional neuroimaging has prompted studies of brain activation during various cognitive tasks.

Coordinate-basedmeta-analysis has been utilized to discover the brain regions that are consistently activated across
experiments. However, within-experiment co-activation relationships, which can reflect the underlying functional
relationships between different brain regions, have not beenwidely studied. In particular, voxel-wise co-activation,
which may be able to provide a detailed configuration of the co-activation network, still needs to be modeled. To
estimate the voxel-wise co-activation pattern and deduce the co-activation network, a Co-activation Probability Es-
timation (CoPE) method was proposed to model within-experiment activations for the purpose of defining the co-
activations. A permutation test was adopted as a significance test. Moreover, the co-activations were automatically
separated into local and long-range ones, based on distance. The two types of co-activations describe distinct fea-
tures: thefirst reflects convergent activations; the second represents co-activations between different brain regions.
The validation of CoPE was based on five simulation tests and one real dataset derived from studies of working
memory. Both the simulated and the real data demonstrated that CoPE was not only able to find local convergence
but also significant long-range co-activation. In particular, CoPEwas able to identify a ‘core’ co-activation network in
the working memory dataset. As a data-driven method, the CoPE method can be used to mine underlying co-
activation relationships across experiments in future studies.

© 2015 Published by Elsevier Inc.
R

53

54

55

56

57

58

59

60

61

62

63

64
U
N
C
OIntroduction

Over the past two decades, researchers have used neuroimaging to
study the functional and structural aspects of the brain, leading to the
generation, analysis, and publication of large amounts of data. Conse-
quently, large scale accessible databases, such as BrainMap (Fox &
Lancaster, 2002; Laird et al., 2005) and NeuroSynth (Yarkoni et al.,
2011), which compile published neuroimaging results, have arisen as re-
positories for the various types of information including peak coordinates
obtained from neuroimaging studies. The use of functional magnetic res-
onance imaging (fMRI) and diffusion tensor imaging (DTI) has helped to
generate great interest in investigating the functional and structural
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connectivity of the human brain. Although the number of connectivity-
based neuroimaging studies that employed tasks is fewer than the ones
that studied the resting state, the growing number of these task-based
studies provides a significant opportunity to expand our knowledge of
task-dependent functional connectivity in order to identify “emergent
properties”, i.e., to discover classes of observations not reported in the
source publications (Fox & Friston, 2012; Laird et al., 2013).

In thefirst such study, Toro et al. (2008) used chi-square calculations
to investigate the relationship between the task-dependent co-
activation pattern and canonical functional brain networks, such as
the default mode network. Asmeta-analytic techniques have improved,
the evolving family of coordinate-based meta-analysis (CBMA)
methods has offered data-driven techniques to quantitatively synthe-
size the consistent functional activation. In general, CBMA is based on
three-dimensional coordinates in MNI (Evans et al., 1992) or Talairach
(Talairach & Tournoux, 1988) standard reference space. Common
CBMA methods are activation likelihood estimation (ALE; (Eickhoff
et al., 2012; Eickhoff et al., 2009; Turkeltaub et al., 2002)) and related
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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techniques, such as (multilevel) kernel density analysis (KDA and
MKDA; (Wager et al., 2004; Wager et al., 2007)). A new meta-analytic
technique based on ALE, meta-analytic connectivity modeling
(MACM), is able to investigate task-dependent connectivity (Eickhoff
et al., 2010; Laird et al., 2009; Robinson et al., 2010). In principle,
MACM is a seed-based method which estimates the activation-
dependent connectivity for a user-defined region of interest. Another
method, independent component analysis (ICA), can be used to mine
the architecture of task-dependent networks in the BrainMap database.
The task-dependent networks alsomatch the pattern from resting state
fMRI data from healthy subjects (Ray et al., 2013; Smith et al., 2009).
Other researchers (Poldrack et al., 2012) used a topical mapping meth-
od to extract the task-dependent networks from the NeuroSynth data-
base. The networks they obtained were also similar to the networks
obtained using resting state data (Poldrack et al., 2012).

These previously-mentioned methods could deduce significantly
convergent activated regions and interpret them as network distribu-
tions. However, thesemethodsmay have disadvantageswhen configur-
ing a detailed connectivity pattern between any two activated brain
regions or voxels. Specifically, theMACMmethod,which is based on de-
fining a region of interest, i.e., a seed-basedmethod,may not be feasible
if the integration or co-activation between any two seeds is taken into
account because the co-activations will need to be calculated one by
one. The other method, i.e., the ICA-based method, can identify the ar-
chitecture of a task-dependent co-activation network, but the configu-
ration of the network may not be detected, i.e., all of the above-
threshold brain regions identified using the ICA-based method may be
considered as consistently co-active. For example, if the ICA-based
method found that brain regions A, B, and C were above the threshold,
a situation could quite possibly exist in which A and B are co-
activated, and B and C are also co-activated, but A and C are not co-
activated. In this situation, the two activated brain regions did not
have the same connectivity or functional co-activation relationships.
On the other hand, the ICA-based method necessitates using a large
number of experiments to satisfy the sample size demanded by the
ICA method. For example, a specific cognitive dataset, such as one
using experiments about working memory, might not have a sufficient
number of experiments, causing sample size to be a problem.

In order to determine the voxel-wise configuration of co-activation
networks, we proposed a method we called CoPE, which modeled the
activation around peak foci by making a map of the Gaussian distribu-
tion around each focus within each experiment. Using co-occurrence
within the same experiment as the criterion, CoPE defined the voxel-
wise co-activations across the experiments. Then, a permutation test
was introduced into CoPE as a significance test. Further, CoPE could sep-
arate the co-activation patterns into either local or long-range, based on
a well-defined distance. On one hand, local co-activation reflects local
convergence in a manner similar to that of the ALE method. Local co-
activation is mainly generated from the model. On the other hand,
long-range co-activation reflects consistent within-experiment co-
activation between distant regions. Mining the interaction effects of
the underlying task-dependent network is of particular interest. To
evaluate the CoPE method, we employed five simulation datasets and
a real working memory dataset to test whether the method could
mine the architecture and the configuration, i.e., the co-activation rela-
tionship, of the co-activation network, especially long-range patterns
from large datasets.

Materials and methods

In practice, few neuroimaging experiments can report more than a
dozen foci for a given contrast, i.e., the activation foci are sparsely dis-
tributed around the brain. So, CoPE only takes co-activations into ac-
count, i.e., non-occurrences between two foci are not modeled. There
are three steps in the CoPE method: The first is to map the peak foci
onto activation maps after calculating the Gaussian distribution around
Please cite this article as: Chu, C., et al., Co-activation Probability Estim
architecture based on neuroimaging ..., NeuroImage (2015), http://dx.doi.
E
D
 P

R
O

O
F

each focus within each experiment. The second step is to obtain the
weight of the co-activation between any two voxels using the individual
activation map from step 1. The third step is to perform a permutation
test to determine the significance of the co-activation. Fig. 1 gives an
overview of the CoPE method.

Mapping the peak foci

Like the ALE method, CoPE uses a three-dimensional Gaussian distri-

bution to model activation around individual coordinates. So, let Ci ¼
ci1…cini

n o
be the reported foci in the ith experiment, where ni is the num-

ber of foci in the ith experiment. Let G(cji, Σi) represent a three-
dimensional Gaussian distribution centered at coordinate cj

i, where Σi is
the three-dimensional diagonal covariance matrix. The elements on the
diagonal are the same and can be defined according to the empirical esti-
mates provided by Eickhoff et al. (2009). The empirical estimate is based
on the inter-subject and inter-template variability. In order to assess the
modeled activation distribution in one experiment, the Parzen-window
density estimationmethod (Parzen, 1962; Rosenblatt, 1956)was adopted
tomodel the activationmap. In thisway, let AMi be the activationmap for
the ith experiment, where AMi can be formalized as

AMi vð Þ ¼ 1
ni

Xni
j¼1

G v ; cij;Σi

� �

with v denoting a voxel. This process was repeated to form an activation
map for each experiment.

Modeling the voxel-wise co-activations

The co-activation relationship, i.e., the activated coordinates report-
ed in a single experiment, is the key idea behindCoPE. In theory, the def-
inition of co-activation between two voxels could be the product of the
individual probabilities of the activations from the activation map,
i.e., the estimated probability density function (pdf), for the experiment.
However, accuracy will be an issue if the probability is directly generat-
ed from the estimated pdf. Because the voxel resolution used in CoPE is
2 × 2 × 2 mm, the estimated pdf will contain a lot of small values for a
large number of voxels, causing problems with accuracy if these are
multiplied by each other. More importantly, the significance test in
next stepwill need amuch higher accuracy to distinguish the difference
between co-activation weights, if we define the co-activation as the di-
rect product of probabilities from the estimated pdf. In addition, each
experiment was considered as independent, and, the experiments
need to be comparable. So, a normalization procedure was adopted to
increase the comparability between experiments. In detail, let V ¼
v1; … ; vnvf g be the voxel set, where nv is the number of voxels. So,
the normalized activation weight for the voxel x in the ith experiments
can be defined as

Pi vxð Þ ¼ AMi vxð Þ
AMi vxð Þ þ max AMi vxð Þð Þ

where Pi(vx) is the normalizedweight for the activation at voxel x in the
ith experiment. The max (AMi(vx)) is themaximumweight for the acti-
vation in the ith experiment. The nonlinear form of normalization is
based on the consideration which is to emphasize the activationweight
close to the informative part (the part of high activation weight) in a
given experiment. After converting the probability density into the nor-
malized activation weight, the weight of the co-activation between any
two voxels across experiments can be defined as

CoWx y ¼
Xnexp
i¼1

Pi vxð Þ � Pi vy
� �
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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Fig. 1. Schematic representation of the procedures for CoPE. (A) Identifying the peak coordinates fromN experiments. (B) Treating each peak coordinate in each experiment separately as
the center of a 3DGaussian probability distribution and combining the distribution functions to provide a specific density function for each experiment. The density in each voxelwas used
to model the activation in each experiment. (C) Defining the voxel-wise co-activation relationships. In each experiment, the lines (for example, the black line) represent co-activation be-
tween the voxels at each end. (D) Deriving the null-distribution which can reflect the random spatial co-activation across experiments. The peak coordinates in each experiment were
randomly permutated, and themaximumvalue of the co-activation from eachpermutationwas used to create a random co-activationmapwithwhich to compare the actual co-activation
map. (E) Deriving the voxel-based significant co-activation relationships. All the co-activation relationship maps were pooled, and the threshold for the pooled weight of each line was
used to identify the lines that represented significant co-activation (for example, the black and the purple ones).
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where CoWx_y represents the co-activation weight between voxels x
and y across experiments. nexp is the number of the experiments. The
necessity of the normalization is illustrated by the calculation of
CoWx_y, which guarantees the accuracy of the calculation. Obviously,
co-activations with high weights correspond to a high probability of
consistency among the experiments.

Inference based on the permutation test

Due to the nonlinear calculation of CoWx_y, a parametric inference
based on the Gaussian random field was not feasible (Eickhoff et al.,
2012). In addition, the false discovery rate (FDR) is not the optimal ap-
proach for making inferences about the topological features derived
from ALE-like meta-analysis methods (Eickhoff et al., 2012). So, the
nonparametric family-wise error rate (FWE) correction for multiple
comparisons was used. More specifically, the nonparametric FWE cor-
rection was based on a Monte-Carlo analysis, i.e., the reported coordi-
nates in each experiment are randomly redistributed throughout the
gray matter of the brain in each permutation. The gray matter mask
was based on ICBM (The International Consortium for Brain Mapping)
gray matter maps with a probability above 10% (Evans et al., 1994). In
each permutation, the number of coordinates and the number of
Please cite this article as: Chu, C., et al., Co-activation Probability Estim
architecture based on neuroimaging ..., NeuroImage (2015), http://dx.doi.
subjects in each experiment were kept unchanged. The co-activation
weight between voxels, i.e., CoWx_y, was calculated in each permuta-
tion. The maximum value of CoWx_y was preserved for subsequent in-
ference. To this end, the distribution of the maximum co-activation
weight was used for the FWE correction (Nichols & Hayasaka, 2003).
In fact, if the distribution of the maximum redistributed co-activation
weight is calculated strictly as mentioned earlier, the time cost will be
too high. For example, performing 5000 permutations on a dataset of
about 180 experiments and about 3000 coordinates would take one to
two days to calculate using a computer running at 2.4 GHz with 16 GB
of memory. Here, we provided an alternative approach for estimating
the compact upper bound of the maximum co-activation weight in
each permutation. Replacing the maximum co-activation weight with
the upper bound allowed us to save a great deal of calculation cost
while providing a conservative estimate of the FWE correction. More
precisely, the key idea behind the approach is based on the Cauchy–
Schwarz inequality (Kadison, 1952; Steele, 2004), in which the calcula-
tion of the co-activation weight satisfies

CoWk
x y ¼

Xnexp
i¼1

Pi vx ; kð Þ � Pi vy ; k
� �

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnexp

i¼1

Pi vx ; kð Þ2
Xnexp
i¼1

Pi vy ; k
� �2

vuut ¼ up CoWk
x y
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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where CoWx_y
k is the co-activationweight between any two voxels in the

kth permutation. Pi(vx , k) N 0 and Pi(vy , k) N 0 are the normalized
weights of the activations within the ith experiment at any voxel in
the kth permutation. up_CoWx_y

k is the upper bound of CoWx_y
k . After

the conversion, the maximum value of the co-activation weight in
each permutation is calculated by the simplified formula

CoWk
max ≤ max up CoWk

x y

� �

where CoWmax
k represents themaximumco-activationweight in the kth

permutation. The calculation of themaximum of up_CoWx_y
k is based on

the descending sort of ∑
nexp

i¼1
Pi vx ; kð Þ2 across all voxels. After sorting, the

product of the first two values in the descending order corresponds to
the maximum of up_CoWx_y

k .

Local convergence and long-range co-activation

In fact, the co-activations for each voxel fall into two types defined
by distance: local convergence and long-range co-activation. In the
case of local convergence, the co-activation weight between the peak
coordinate and the local neighborhood directly around it should be
high, because the coordinate is modeled by the activations that fit a
Gaussian distribution. However, our particular interest was to mine
the interaction effect of the underlying task-dependent network,
which is represented by long-range co-activations. The distance used
to distinguish the local and the long-range co-activation was defined as

D ¼ 3δ

where D is the distance (in mm) for distinguishing between local con-

vergence and long-range co-activation, and, δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:32ffiffiffiffiffiffiffi
Nsubj

p þ 3:62
r

. Nsubj

is the mean number of subjects across the experiments. δ is the empir-
ical estimate of the standard deviation for the modeled Gaussian distri-
bution (Eickhoff et al., 2009). Voxels that were 3δ away from the
reported focus were considered to be distant, because the probability
of their being physically near the focus was negligible. Consequently,
co-occurrences beyond this range would not be likely to be driven by
a local convergence of the foci but rather represent true co-activation.
In order to measure the level of significant co-activation amount at
each voxel, the weights of all the significant co-activations with that
voxelwere added together. The degree densitymap (DDM)was defined
as a map of the summed weights for each voxel. An example of the cal-
culation of a DDM is provided in Supplemental Fig. 1. Further, eachDDM
was separated into two parts: local and long-range. Specifically, the
local DDMwas defined as thewhole brain degree distribution restricted
by distance D, i.e., only local convergence was considered. The long-
range DDM referred to the whole brain co-activation distribution be-
yond distance D, i.e., only long-range co-activations were considered.

Evaluation of the CoPE method

To evaluate the CoPE method, we analyzed several simulated
datasets. In addition,we analyzed a real dataset about workingmemory
to see if we could use the reported coordinates to determine the config-
uration of the task-dependent co-activation network. The ability of CoPE
to find the convergent activation regions was validated by comparing
the CoPE results with those found using ALE. The simulated datasets
had two basic properties in common. First, the simulated peak foci in
each experimentwere randomly derived from a special Gaussian distri-
bution centered at a designated center. In each experiment, the stan-
dard deviation for the Gaussian distribution was calculated using the
method in Eickhoff et al. (2009). Second, the number of subjects in
Please cite this article as: Chu, C., et al., Co-activation Probability Estim
architecture based on neuroimaging ..., NeuroImage (2015), http://dx.doi.
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each experiment was randomly generated, with a range of 14 to 30
participants.

Each of the five simulations for the CoPE method had some type of
special property. Simulation 1 was designed to test whether CoPE
could find the convergent activation region across a set of experiments.
Convergent activation was a necessary condition for the co-activation
analysis in the next step. In this case, an extreme situation in which
only one peak focus was found in each experiment was considered. By
using only one focus, we could ensure that there was no co-activation
between reported foci. Any voxel-wise ‘co-activation’ came completely
from the model. Although it only used the modeled co-activation, Sim-
ulation 1 was expected to show whether the convergent region was
similar to the activation results obtained using ALE. More specifically,
the dataset consisted of 50 experiments, each of which included 1 re-
ported coordinate that was randomly derived from the Gaussian distri-
bution centered at this location: MNI: 0 8 64.

Simulation 2was an expansion of Simulation 1 to test whether CoPE
could detect not only multiple convergent activation regions but also
the co-activation relationship across different regions. Specifically, we
designed 50 experiments in each of which were two reported coordi-
nates randomly derived from two individual Gaussian distributions cen-
tered at two centers: Simulated point 1 (SP1, MNI: 0 8 64) and
Simulated point 2 (SP2, MNI: 0–76 6).

Simulation 3was a supplement to Simulation 2 to determinewheth-
er CoPE could distinguish an absence of co-activation between two acti-
vated regions. Specifically, we designed 100 experiments, 50 of which
had one peak coordinate in each experiment randomly derived from
the Gaussian distribution centered at Simulated point 1 (SP1, MNI: 0 8
64) and the other 50 of which had one peak coordinate in each
experiment with the Gaussian distribution centered at Simulated
point 2 (SP2, MNI: 0–76 6).

The goal of Simulation 4 was to test whether CoPE would be able to
detect both local convergence and long-range co-activation. Specifically,
we designed three centers: Simulated point 1 (SP1, MNI: 0–74 8), Sim-
ulated point 2 (SP2, MNI: 0 48 12) and Simulated point 3 (SP3, MNI: 0 0
54). Once again, we designed 100 simulated experiments, 50 of which
had one peak focus from the Gaussian distribution centered at SP3
and the other 50 had two peak foci individually derived from the two
Gaussian distribution centered at SP1 and SP2. Thus, in this simulation
SP1 and SP2 were co-activated, but SP3 was only activated.

Simulation 5 investigated the effect of noise on CoPE. Specifically, we
designed five centers: Simulated point 1 (SP1, MNI:−12−16 8), Simu-
lated point 2 (SP2, MNI: 12 −18 6), Simulated point 3 (SP3, MNI: −56
−16 36), Simulated point 4 (SP4, MNI: 56 −16 36) and Simulated
point 5 (SP5, MNI: 0 6 60) with five random noise levels: Level 1
(noise coordinates to information coordinates: 10:1), Level 2 (noise co-
ordinates to information coordinates: 3:1) and Level 3 (noise coordi-
nates to information coordinates: 1:1). Two additional levels were also
tested to test the extremes. One of these had no random noise and the
other had an extreme noise level, in which the ratio of noise coordinates
to informative coordinates was 100:1. In all, each simulation utilized 100
experiments, 50 of which had two peak foci individually derived from
the two Gaussian distributions centered at SP3 and SP4. The other 50 ex-
periments utilized three peak foci derived separately from SP1, SP2 and
SP5. The random noise called for by each noise level was added to each
experiment so that it was uniformly distributed across the brain mask.

The real dataset was obtained from a recent coordinate-basedmeta-
analysis on working memory (Rottschy et al., 2012). This dataset
consisted of 189 experiments with 2662 activation foci. Differences in
the reported coordinates were transformed from Talairach space to
MNI space using the Lancaster transform (Lancaster et al., 2007). The
dataset had been collected by hand from the BrainMap dataset and
the PubMed literature (see more detail in Rottschy et al., 2012).

ALE and CoPEwere applied to the simulation datasets and thework-
ing memory dataset. ALE was performed by the GingerALE desktop ap-
plication (http://www.brainmap.org/ale) using the approach provided
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069

http://www.brainmap.org/ale
http://dx.doi.org/10.1016/j.neuroimage.2015.05.069


340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

5C. Chu et al. / NeuroImage xxx (2015) xxx–xxx
in Eickhoff et al. (2012) and Eickhoff et al. (2009). The correction meth-
od used in ALE was a cluster-level FWE correction. The cluster was
formed using a voxel-level threshold of p b 0.001. In the CoPE method,
a permutation test with 5000 permutations was used to control the
FWE rate.
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Results

Simulation datasets

Simulation 1 was used to discover whether CoPE could find the con-
vergent activation region across the experiments. The DDM that re-
vealed the modeled co-activation found by using CoPE was very
similar to the activation map from ALE. The pattern of the convergent
region obtained using CoPE corresponded to the pattern of the consis-
tently activated region obtained using ALE (Fig. 2A). In addition, the
modeled co-activation relationship that passed the FWE correction is
shown in Fig. 2B. Themodeled co-activationwas dense around the sim-
ulation point (MNI: 0 8 64).

Simulation 2 indicated that CoPE could find the co-activations be-
tween different activation regions. Similar regions were detected by
both ALE and CoPE (Fig. 3A). Fig. 3B presents the voxel-wise significant
co-activation relationships. Consistent with the test design for Simula-
tion 2, co-activation was found between the regions around SP1 and
SP2.

As a supplement to Simulation 2, Simulation 3 presented a situation
in which the two regions had no co-activations. The activation map
from ALE was similar to the DDM from CoPE in Simulation 3 (Fig. 4A).
Moreover, the absence of co-activation between the two regions was
found by CoPE (Fig. 4B), i.e., there was no co-activation relationship be-
tween the regions around SP1 or SP2.

Simulation 4 was designed to determine whether CoPE could distin-
guish local convergence from long-range co-activation in the same
dataset. Fig. 5A presents the distribution of the dense co-activation re-
gions around the simulated points (SP1, SP2 and SP3). In the simulation,
3δ was used to distinguish between local convergence and long-range
co-activation. δ was calculated as described in the Materials and
methods section. In the simulation dataset, Nsubj was 21.3, yielding a
3δ of 11.7 mm. Using this criterion, the local DDM is presented in
Fig. 5B, which shows similar distributions around the simulated points.
In Fig. 5C, the long-range DDMshowed that only the regions around SP1
and SP2 possessed long-range co-activations, a finding which was con-
sistent with the simulation design. The detailed voxel-wise co-
activation relationship is presented in Fig. 5D. Meanwhile, this simula-
tion showed no long-range co-activation between SP3 and the others
(SP1 and SP2).
U
N
C

Fig. 2. Results of Simulation 1. (A) Left: the ALE results based on the simulation data. The pentag
p b 0.01 using a cluster-level FWE correction. Right: the degree density map (DDM) derived fr
activation matrix from CoPE. The threshold was p b 0.01 using an FWE correction. Each node of
Each column lists all the significant co-activation relationships that a voxel had with other vox
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In Simulation 5, simulation datasets with different levels of random
noise were used to evaluate the CoPE method. As expected, given the
design of the simulation, co-activation occurred between the regions
around SP3 and SP4. In addition, the regions around SP1, SP2 and SP5
possessed co-activation relationships between any pair of the regions.
CoPE was able to identify co-activation relationships consistent with
the design at the different noise levels, although the extent of the co-
activations was not precisely the same across the various noise levels.
The DDM and the voxel-wise co-activation matrix for the noise-free
dataset are presented in Fig. 6A. The co-activation relationshipwas con-
sistent with the designed one (co-activations between SP1, SP2, and
SP5; co-activation between SP3 and SP4). The co-activation relationship
was preserved even with an increase in noise level (Fig. 6B–D). More-
over, similarity in the distribution of the regions with dense co-
activations was also preserved, although the extent of these regions
was a little different from the result from the noise free dataset (DDM
in Fig. 6A–D). In the extreme situation (noise: informative foci 100:1),
although the co-activation was weaker, the regions corresponding to
the design in Simulation 5 could still be found (Supplemental Fig. 2).
In detail, little co-activation was found between the region around SP3
and the region around SP4. Co-activation was found between the re-
gions around SP1, SP2, and SP5. Only individual local convergence was
found around SP1, SP2, and SP5 (Supplemental Fig. 2).
E
D
 PWorking memory dataset

Theworkingmemory datasetwas used to evaluate CoPE in a real ap-
plication. The long-range co-activations mined from the dataset were
particularly interesting in that they showed co-activation relationships
between several core brain regions. In detail, the DDM and the local
DDM were both similar in the distributions of the significant regions
to those obtained using ALE (see Fig. 7A, B, and C). However, the long-
range DDMdiffered from the ALE result when the co-activation was re-
stricted by distance (N12.12 mm; calculated as 3δ based on a Nsubj of
14.6). Although the ALE and the DDM (Fig. 7A & B, respectively)
reflected different aspects of the dataset, they showed similar results.
In the ALE result, the significant regions (Fig. 7A) included the bilateral
inferior frontal gyrus (IFG; extending to the Broadmann area 44 (BA
44)), the bilateral middle frontal gyrus (MFG), the supplementary
motor area (SMA), the bilateral insula (Ins), the bilateral inferior parie-
tal lobule (IPL), the bilateral superior parietal lobule (SPL), the left basal
ganglia (BG), the bilateral ventral visual cortex, and lobule VI of the cer-
ebellum. According to theDDM, the regionswith a high density (Fig. 7B)
were the bilateral IFG (extending to BA44), the bilateral MFG, the SMA,
the bilateral Ins, the bilateral IPL, and the bilateral SPL. For the local
DDM, the regions with dense local convergence (Fig. 7C) were
ram represents the center (MNI: 0 8 64) of the simulation data. The result was corrected at
om the FWE-corrected voxel-wise co-activation matrix. (B) The significant voxel-wise co-
thematrix corresponds to a voxel which had a significant co-activation with other voxels.
els.
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distributed in the bilateral IFG (extending to BA 44), the bilateral MFG,
the SMA, the bilateral Ins, the bilateral IPL, and the bilateral SPL. For
the long-range DDM, the main co-activated regions (Fig. 7D) were lo-
cated in the left IFG (extending to BA44), the SMA, the bilateral Ins,
and the left inferior parietal lobule (IPL). Moreover, no significant long
range co-activation was found around the right IPG although this had
showed up in the results from the ALE and the local DDM (see Fig. 7A,
C, and D). The activation extent was smaller in the long-range DDM
compared with the local DDM (see Fig. 7C and D). Because long-range
co-activation was the main focus of this study, the long-range co-
activation was analyzed. In detail, five spatially contiguous clusters
were derived from the long-range DDM to define the regions of interest
(ROI). We used the criterion of whether a voxel was one of the 26
nearest neighbors to another voxel to determine whether they were
in the same ROI or a separate one. The five clusters corresponded to
the regions in Fig. 7D and are shown in 3D in Fig. 8B. The voxel-wise
long-range co-activation between the clusters is presented in Fig. 8A,
which shows the detailed configuration of the co-activation relationship
based on the working-memory dataset. In Fig. 8B, the co-activation
relationship between any two clusters is shown in 3D. Long-range co-
activations were detected between the bilateral Ins, SMA, and left IPL.
Between the left BA 44 and the SMA, there was significant co-
activation. The long-range core co-activations for the working-
memory dataset appeared to form a left-lateralized network, with the
exception of the inclusion of the right Ins.
U
N
C
O

Fig. 4. Results of Simulation 3. (A) Left: the ALE results based on the simulation data. The penta
corrected at p b 0.01using a cluster-level FWEcorrection. Right: the degree densitymap (DDM)
wise co-activationmatrix fromCoPE. The thresholdwas p b 0.01 using an FWE correction. Each n
voxels. Each column lists all the significant co-activation relationships that a voxel had with ot
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In this current study, we proposed a new approach, which we
named CoPE, to infer voxel-wise task-dependent co-activation net-
works based on coordinates reported in neuroimaging experiments.
The significance of the co-activations was identified using a permuta-
tion test. The CoPE method was able to distinguish between different
types of co-activations, especially between long-range ones and local
convergence.
E

The sparseness of peak foci

CoPE is restricted in modeling the co-activation across experiments.
Theoretically, the co-activation and non-co-activation should be equally
considered. However, the current experiments usually report only a few
foci. It is difficult to distinguishwhether the non-reported foci are infor-
mative or not. For example, there were 2662 peak foci in the current
working memory dataset, but most of these foci (2559) were only re-
ported once. So, we only took the reported foci into consideration.
After using the Parzenwindowdensity estimationmethod, wemodeled
the activation in each experiment. In theory, there was no absolute zero
at any voxel no matter how small the activation weight was. Although
the approach restricted in activation foci was suboptimal, it obtained
more confidence given the special property of the peak foci.
grams represent the centers (MNI: 0 8 64; 0−76 6) of the simulation data. The result was
derived from the FWE-correctedvoxel-wise co-activationmatrix. (B) The significant voxel-
ode of thematrix corresponded to a voxelwhich had a significant co-activationwith other
her voxels.

ation (CoPE): An approach for modeling functional co-activation
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Thewithin-experiments effect refers to the effect of findingmultiple
foci that are close together and/or of findingmany foci in a single exper-
iment. If a study focused on each individual coordinate, i.e., treated each
coordinate as independent (a fixed effect), the study could easily be bi-
ased by experiments with a greater number of activation coordinates.
So, treating individual experiments as independent (a random effect)
would help to avoid thewithin-experiments effect. For the ALEmethod,
Turkeltaub et al. (2012) proposed to set theweight of a voxel according
to the nearest reported coordinate in an individual experiment in order
to weaken the within-experiments effect. For CoPE, we considered the
within-experiments effect differently. Specifically, CoPE used the Parzen
window method to estimate the probability density function for each
experiment. A normalization procedure was then adopted to increase
the comparability between experiments. After normalization, the max-
imum normalized activation weight was the same in each experiment.
In this way, each experiment corresponding to a unique probability dis-
tribution function was treated as independent. Even if many foci were
reported in one experiment, it was also represented by a probability dis-
tribution function, rather than treating the foci as independent.
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Multiple comparison correction

As demonstrated in Eickhoff et al. (2012), an FDR correctionwas not
appropriate for inferring the topological features (region of activations)
from the statisticalmap derived from the ALEmeta-analysis. So, an FWE
Please cite this article as: Chu, C., et al., Co-activation Probability Estim
architecture based on neuroimaging ..., NeuroImage (2015), http://dx.doi.
correction was adopted in CoPE. By randomly redistributing the coordi-
nates in the experiments and performing the same analysis, the maxi-
mum value of each permutation was preserved as an estimate of the
distribution of the voxel-level peak values. The estimated distribution
could then be used to define the FEW-corrected threshold. This estima-
tion process had the advantage of not needing a pre-defined parameter-
ization of the distribution, i.e., it was a non-parameter estimation. FWE
correction has been exploited to provide a good estimate of the distribu-
tion of the maximum cluster size in the MKDA method (Wager et al.,
2007). In the CoPE method, FWE correction was used to provide a
voxel-level correction based on the distribution of the maximum co-
activation weights from each permutation. However, if the maximum
from each permutation was calculated precisely, the computational
time would be rather great. Therefore, the Cauchy–Schwarz inequality
was used to estimate a conservative upper bound for the maximum
for each permutation to reduce the computing cost. In addition, the con-
servative upper bound provided a more strict correction for the co-
activation weight, which was beneficial for the power of the test.

Identification of the local convergence and long-range co-activation

In the CoPE method, the reported coordinates were used as the cen-
ters of Gaussian distributions to model activation in the gray matter.
Local convergence was reflected by the overlap between the estimated
probability density functions. If the local convergencewashigh arounda
voxel, CoPE showed that the estimated probability density functions
densely overlapped with each other across the experiments. Thus, al-
though local convergence was primarily generated using the model,
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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sistent activation across a set of experiments. Long-range co-activations
were particularly interesting, as they reflected the convergence of dis-
tant co-occurrences between two regions. Identifying long-range co-
activations may contribute to mining the interactions between the
brain architecture underlying specific cognitive domains. Networks of
interactions between distant brain regions, including the default mode
network and the salience network, have been identified from the
whole BrainMap database using the ICA method (Ray et al., 2013;
Smith et al., 2009). In addition, MACM has been used to model ROI-
based co-activation patterns from the data in the BrainMap database
(Eickhoff et al., 2011; Robinson et al., 2010). These methods indicate
that long-range interactions can be identified in a coordinate-based da-
tabase. Moreover, local and distant functional connectivity, which
showed different distribution patterns in their brain regions, has been
studied using resting-state and task fMRI data (Sepulcre et al., 2010).
Sepulcre's study distinguished local fromdistant functional connectivity
by whether they were within or beyond 14 mm (Sepulcre et al., 2010)
and also found similar results using distances between 10 mm and
14 mm. In the CoPE method, this distance was decided using the
Please cite this article as: Chu, C., et al., Co-activation Probability Estim
architecture based on neuroimaging ..., NeuroImage (2015), http://dx.doi.
mean number of subjects across the experiments. Specifically, the
CoPE method used 3 standard deviations (δ) from the mean number
of subjects using the method in Eickhoff et al. (2009). When a reported
peak was used as the center of a Gaussian distribution, the probability
that a co-activated voxel was more than 3δ from the peak was negligi-
ble. In the working memory dataset, the distance for distinguishing
long-range co-activation was set as 12.12 mm, which was 3δ from the
mean, a numberwhichwas similar to the result in Sepulcre et al. (2010).

The simulation datasets

The analysis of the simulation datasets illustrated the capability of the
CoPE method to find convergent activation regions, to infer voxel-wise
local/long-range co-activations, and to resist random noise. Simulation 1
indicated that the local convergence could be detected by CoPE even in
an extreme example (a single coordinate for an experiment with no co-
activation between reported foci). This simulation illustrated that the
brain regions possessing local convergence detected by CoPEwere similar
to that detected using the ALE method. Simulation 2 expanded the situa-
tion in Simulation 1 to show how CoPE would respond to simultaneous
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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Eactivation and co-activation. CoPE was still able to find the activation re-

gions in Simulation 2 (Fig. 3A). Moreover, the voxel-wise co-activation
was also derived (Fig. 3B). Further, Simulation 3 was supplementary to
Simulation 2, but the activation and the co-activation were inconsistent,
i.e., there was no co-activation between the two regions. When the
U
N
C
O

R

Fig. 8. The long-range co-activation relationships derived from theworkingmemory dataset. (A
voxelwas one of the 26nearest neighbor voxels. The voxel-wise long-range co-activationswere
in 3D space.

Please cite this article as: Chu, C., et al., Co-activation Probability Estim
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dataset of Simulation 3 was used, CoPE only found the activation regions
(Fig. 4A), but the lack of co-activation became clear in the voxel-wise co-
activationmatrix (Fig. 4B). These simulations showed that CoPE was able
to distinguish the activation and the co-activation relationships simulta-
neously. Simulation 4 demonstrated the effects of local convergence and
)We identified 5 clusters derived from the long-rangeDDMusing the criteria of whether a
mapped between the clusters. (B) The clusters and the co-activation relationship projected

ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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long-range co-activation. The difference between these provided the rea-
son for distinguishing the activated regions based on the location of their
co-activation. If the reported fociwere activated independently, only local
convergence occurred around the voxels. In Simulation 4, we could find
not only the activation region (SP3), but also the co-activation regions
(SP1 and SP2), using local/long-range co-activations (Fig. 5B and C).
Moreover, the voxel-wise co-activations could be used to distinguish be-
tween the activation properties (local/long-range) of the regions
(Fig. 5D). Simulation 5 showed that the CoPE method could be used to
infer consistent results from heavy noise to light noise (Fig. 6). In fact,
heavy noise resulted in a biased and weak activation compared with the
noise-free condition, but the co-activation relationship was still similar
among the different noise levels, and the densely co-activated regions
had the same distribution pattern. To test whether the accuracy of CoPE
would break down at very high noise levels, an extreme noise level was
introduced. In the extreme high noise level, CoPE found only a little co-
activation between SP3 and SP4 (Supplemental Fig. 2), but the local con-
vergencewas still preserved from SP1 to SP5. The ratio of the noise foci to
informative foci was set at 300:3 in the experiments with reported foci
around SP1, SP2, and SP5. The ratio of noise foci to informative foci was
set at 200:2 in the experiments with reported foci around SP3 and SP4.
The noise was severe in the experiments with reported foci around SP1,
SP2 and SP5, so the co-activation was weaker around SP1, SP2 and SP5.
Because CoPE was focused on co-activation relationship, random noise,
which could not be consistently found to be co-activated with other sig-
nals, made little effect on the result. These simulations increased our con-
fidence when we performed CoPE in a real application.

Working memory dataset

In the real dataset, the CoPEmethodwas used not only to find the ac-
tivation results that corresponded to the results obtained using ALE
(Fig. 7A and B) but also to determine the long-range core task-
dependent network (Figs. 7D and 8). The ALEmethod focused on conver-
gent activations across experiments. The DDM (especially the long-range
DDM) reflected the amount of (distant) co-activation of a voxel. On one
hand, only voxels where activation occurs can have co-activations. On
the other hand, not every activated region will necessarily have a signifi-
cant degree of long-range co-activation. Because the dataset was from a
previous study (Rottschy et al., 2012), the results from CoPE (DDM)
largely reproduced the previous results in what can be considered to be
a validation of the CoPEmethod. In otherwords, CoPEwas able to identify
the regions (those corresponding to the ones found by ALE; Fig. 7A and
B) that would be reasonable to include in the network modeling in the
next step. Because these processes reflect different aspects of the data,
the DDM and the results from the ALE method were somewhat different
(Fig. 7A and B). For example, the bilateral ventral visual cortex and lobule
VI of the cerebellum, which were weakly activated in the ALE result, did
not show up in the DDM.

Given the distance restriction, long-range co-activation that includ-
ed the left BA 44, the SMA, left IPL, and bilateral insula was inferred
(Fig. 7D). These brain regions were recognized as the ‘core’ network in
the previous work (Rottschy et al., 2012). Moreover, the long-range
co-activation network was lateralized to the left hemisphere, as was
also found in the previous work using different task components
(Rottschy et al., 2012). The deduced left-lateralization could be a clue
for the functional distribution of working-memory. However, we can-
not definitely conclude that the functional application of working-
memory is left-lateralized because it may have just been a reflection
of the co-activation of the data from the datasets in the reported studies.
These studiesmay underrepresent the complete set ofworkingmemory
research. For example, some researches indicated that the left prefrontal
cortex was related to working memory retrieval (Oztekin et al., 2009),
and the left hemisphere was found to be important in verbal working
memory (Binder et al., 2009; D'Arcy et al., 2004; Nagel et al., 2013).
But other studies of spatial working memory showed activations in
Please cite this article as: Chu, C., et al., Co-activation Probability Estim
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the right hemisphere (Jonides et al., 1993; Nagel et al., 2013; van
Asselen et al., 2006).

Using the criterion ofwhether the voxelswere among the 26 nearest
neighbors, the voxel-wise co-activation was integrated into the
between-cluster co-activation relationship between five clusters
(Fig. 8).More precisely, clusters 1 and 2were distributed at the junction
between several brain regions, including the orbital IFG, triangular IFG,
and anterior insula (Figs. 7D and 8B). This finding was in good agree-
ment with a previous study in which foci in the IFG and anterior insula
merged into a single cluster (Wager & Smith, 2003). This strong co-
activation between clusters 1 and 2 indicates integration of the bilateral
IFG and bilateral insula (Fig. 8B). Engagement of the insula in working
memory encoding, maintenance, and retrieval has been noted in previ-
ous studies (Mohr et al., 2006; Munk et al., 2002; Pessoa et al., 2002).
The fronto-parietal network, which is the widespread brain functional
location of the workingmemory duringworkingmemory performance,
was partially revealed in our result. We found strong long-range co-
activation between the left IPL and the SMA (cluster 5 and cluster 4;
Fig. 8B) and co-activation between the left IPL and the insula (cluster
5, cluster 1 and cluster 2; Fig. 8B). The prefrontal cortex (PFC) was not
revealed as a single cluster that possessed strong co-activation with
the parietal cortex (PC). However, clusters 1 and 2 included partial re-
gions of the IFG. So, the co-activations between cluster 5, cluster 2,
and cluster 1 may have represented an integrated result from the IFG,
insula, and left IPL. The engagement of the SMA in working memory
has been observed as a major effect in previous meta-analyses (Owen
et al., 2005; Rottschy et al., 2012; Wager & Smith, 2003). In addition,
the co-activation pattern corresponded with a previous fMRI study
which found significant functional connectivity between the left
Sylvian–parietal–temporal area (Spt) and regions located at the junc-
tion of the anterior insula and the IFG and significant functional connec-
tivity between left Spt and the pre-SMA during the memory-encoding
stage (Hashimoto et al., 2010). Moreover, there was co-activation be-
tween the left opercular IFG (located in BA 44) and the SMA,
i.e., cluster 3 and cluster 4. The engagement of the SMA and BA 44 in
working memory tasks has been observed in several studies (Barber
et al., 2013; Chein & Fiez, 2001). Noting that cluster 3 was significantly
co-activated only with cluster 4, it is possible that cluster 3 participated
in the working memory task through cluster 4.

The significant co-activation relationships mined from the data
should be considered as clues to probable functional relationships. In
fact, following the definition of functional connectivity as the temporal
coincidence of spatially remote neurophysiological events (Friston,
1994), co-activation might be regarded as functional connectivity in
which the (temporal) unit of observation was the experiment. Valida-
tion of the relationship between the mined co-activation and brain
function needs further studies, including some that adopt new samples
or new paradigms.

Conclusion

In this study, we proposed a new method named CoPE to mine a
voxel-wise task-dependent co-activation network based on foci report-
ed in a number of experiments. In CoPE, the Parzen window method
was performed to model the activation within an experiment. The
weight of the co-activation was defined as the product of the individual
normalized probabilities of the activations summed across the experi-
ments. For the significance test, to save on the high computational
costs of calculating the permutations, CoPE used a conservative FWE
for multiple comparisons. Simulation data demonstrated that CoPE
could not only find convergent activation brain regions but also be
used to infer the voxel-wise co-activation pattern. CoPE also generated
stable results in both low and high noise levels. Furthermore, CoPE
found a left-lateralized network in a working memory dataset. The
long-range co-activation was of particular interest in that it may reflect
the co-activation between distant regions. From these results, it seems
ation (CoPE): An approach for modeling functional co-activation
org/10.1016/j.neuroimage.2015.05.069
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that mining voxel-wise co-activations from previous studies could pro-
vide clues about what to look for and how to perform future studies.
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