
Technical Note

Co-activation patterns distinguish cortical modules, their connectivity
and functional differentiation

Simon B. Eickhoff a,b,c,⁎, Danilo Bzdok a,b,c, Angela R. Laird d, Christian Roski b,
Svenja Caspers b, Karl Zilles b,c,e, Peter T. Fox d

a Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
b Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
c Jülich Aachen Research Alliance (JARA)—Translational Brain Medicine, Germany
d Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
e C. & O. Vogt-Institute for Brain Research, University of Düsseldorf, Germany

a b s t r a c ta r t i c l e i n f o

Article history:
Received 25 November 2010
Revised 14 April 2011
Accepted 6 May 2011
Available online 14 May 2011

Keywords:
Database
fMRI
Areas
Connectivity
Action
SMA

The organization of the cerebral cortex into distinct modules may be described along several dimensions,
most importantly, structure, connectivity and function. Identification of cortical modules by differences in
whole-brain connectivity profiles derived from diffusion tensor imaging or resting state correlations has
already been shown. These approaches, however, carry no task-related information. Hence, inference on the
functional relevance of the ensuing parcellation remains tentative. Here, we demonstrate, that Meta-Analytic
Connectivity Modeling (MACM) allows the delineation of cortical modules based on their whole-brain co-
activation pattern across databased neuroimaging results. Using a model free approach, two regions of the
medial pre-motor cortex, SMA and pre-SMA were differentiated solely based on their functional connectivity.
Assessing the behavioral domain and paradigm class meta-data of the experiments associated with the
clusters derived from the co-activation based parcellation moreover allows the identification of their
functional characteristics. The ensuing hypotheses about functional differentiation and distinct functional
connectivity between pre-SMA and SMA were then explicitly tested and confirmed in independent datasets
using functional and resting state fMRI. Co-activation based parcellation thus provides a new perspective for
identifying modules of functional connectivity and linking them to functional properties, hereby generating
new and subsequently testable hypotheses about the organization of cortical modules.

© 2011 Elsevier Inc. All rights reserved.

Introduction

In this paper, we propose a set of neuroinformatic tools to
investigate a given seed region's structural–connectional and func-
tional properties. This method relies on data-driven algorithms
capitalizing on the host of task-dependent imaging data and meta-
information archived in the BrainMap database. The feasibility of our
approach and its potential in generating testable hypotheses is
demonstrated here by an exemplary seed region in the medial
premotor cortex.

Evidence from primate research indicated that microstructure and
connectivity of the cortex are the main determinants of its functional
segregation (Luppino et al., 1991; Matelli et al., 1991). Early
histological investigations into the (micro-) structural heterogeneity
of the cerebral cortex have resulted in several detailed, though

partially incongruent, anatomical maps (Brodmann, 1909; Vogt and
Vogt, 1919). Although histological examination allows topographical
delineation of cortical modules, mere microstructure is poorly
informative in the absence of a strong a priori hypothesis when
attempting to deduce functional roles of those modules.

The neuroimaging era has now enabled the precise localization of
functional responses across the whole brain and led to a wealth of
information on the neural correlates of various processes. In the
context of differentiating cortical modules, however, fMRI has
predominantly a confirmatory role. That is, using appropriate
experimental designs, fMRI is an extremely powerful tool for testing
hypotheses about, e.g., a functional differentiation between two
regions (Reddy and Kanwisher, 2006) or a dichotomy between the
neural correlates of two processes (Charron and Koechlin, 2010).
While many hypotheses derived in particular from primate work
(Bremmer et al., 2001) and lesion mapping studies (Riecker et al.,
2005) could be explicitly tested using this approach, neuroimaging is
intrinsically less well suited to delineate the organization of a
particular brain region. Whereas fMRI and positron emission
tomography (PET) are compelling approaches for testing hypotheses
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about a functional differentiation between cortical modules, their
potential for delineating them – given a particular brain region – is
limited.

Apart from fMRI allowing powerful functional mapping, several
neuroimaging-based methods for assessing human brain connectivity,
i.e., interactions between different brain regions, have evolved over the
recent years. Among those, effective connectivity analyses, such as
dynamic causal modeling (Friston et al., 2003) or structural equation
modeling (Buchel and Friston, 1997), allow the investigation of task-
dependent influences among cortical areas (Grefkes et al., 2008). As an
alternate approach, fMRI time-series signals measured during task or
resting state may be correlated between different cortical regions to
infer their functional connectivity (Hampson et al., 2002; Ramnani et al.,
2004). Probably evenmore than functional activation studies, however,
these methods are primarily confirmative.

In contrast to those largely hypothesis-driven methods to study
connectivity, approaches for widely data-driven connectivity analyses
have recently emerged. This has first been demonstrated for the
analysis of anatomical connectivity using diffusion tensor imaging
(DTI, Johansen-Berg et al., 2004). The key idea behind connectivity-
based parcellation is to first analyze the connectivity of each
individual voxel in a particular seed region of interest to the rest of
the brain separately. By comparing the anatomical connectivity
profiles of the individual seed voxels with each other, these can
then be grouped into distinct clusters of homogeneous connectivity
(Anwander et al., 2007; Johansen-Berg et al., 2004; Klein et al., 2007).
Apart from DTI, functional resting state MRI emerged as another
highly suitable cornerstone for the parcellation of gray matter. Those
signal fluctuations likely conveying meaningful functional relation-
ships between brain regions are illustrated by the fact that they were
reported to widely correspond with both task-state networks (Biswal
et al., 1995; Smith et al., 2009) and structural connectivity (Greicius et
al., 2009; Hagmann et al., 2008). Approaches investigating cortical
sub-specialization capitalized on this type of inter-regional connec-
tivity, such as for the successful parcellation of the premotor cortex
(Kim et al., 2010), insular cortex (Cauda et al., 2011), and thalamus
(Zhang et al., 2008). Taken together, DTI and resting-state correlations
thus allow the delineation of cortical modules based on their
connectivity pattern without a need for prior knowledge. Neither
modality, however, carries any task-dependent information in order
to form hypotheses on which tasks may selectively activate them or
modulate their connectivity.

A task-dependent approach to connectivity-based parcellation
that addresses this dilemma is meta-analytic connectivity modeling
(MACM). MACM is based on assessing the brain-wise co-activation
patterns of a seed region across a large number of databased
neuroimaging results (Laird et al., 2009a). Importantly and in contrast
to the aforementioned approaches, the experiments underlying the
difference in co-activation pattern may then be described behavior-
ally, linking them to functional properties of the ensuing parcellation.
This unique advantage of MACM thus allows formulation of
hypotheses for subsequent targeted experiments on functional
activation properties and inter-regional connections.

Here we demonstrate that MACM can be used reliably to identify
cortical modules in a data-driven fashion based on co-activation
patterns across the brain by applying it to a seed volume of interest
(VOI) in themedial premotor cortex. First, we identified for each voxel
of the seed VOI those experiments in the BrainMap database that
reported activation at that particular location. By performing an
Activation Likelihood Estimation (ALE) meta-analysis over these
experiments, we derived the brain wide co-activation pattern for
each particular seed voxel. Individual seed voxels were then clustered
into distinct groups based on similarities and differences in these co-
activation maps. Differences in co-activation pattern of the ensuing
clusters were tested by directly contrasting the regional MACM
patterns, yielding hypotheses about differential connectivity between

them. Finally, behavioral domain and paradigm class meta-data of
experiments associated with the ensuing clusters. This allowed to
characterize the functional properties of these connectivity defined
cortical modules.

Materials and methods

The potential of co-activation based cortical parcellation is
demonstrated in the medial premotor cortex, i.e., the region of
(pre-) SMA. A volume of interest (VOI) was defined by merging two
activation sites from a neuroimaging study of speeded motor
responses (Jakobs et al., 2009). The posterior activation was
consistently observed during left, right and bilateral responses
(Supplementary Fig. 1), the anterior showed increased activation
when subjects responded to (randomly) bilateral as compared to
unilateral stimuli. Here, both clusters were combined into a single
volume of interest (VOI). We then assessed whether the two original
regions could be recovered in a model-free analysis from this merged,
i.e., single, VOI based on similarities between co-activation patterns of
the individual seed voxels across neuroimaging experiments.

Meta-analytic connectivity mapping

Co-activation based parcellation was performed using the Brain-
Map database (Laird et al., 2009a) (www.brainmap.org). From that
database, only those experiments were considered, that reported
stereotaxic coordinates from normal mapping studies (no interven-
tions and no group comparison) in healthy subjects using either fMRI
or PET. These inclusion criteria yielded (at the time of analysis)
approximately 6200 functional neuroimaging experiments. Note that
we considered all eligible BrainMap experiments because any pre-
selection of taxonomic categories would constitute a fairly strong a
priori hypothesis about how brain networks are organized. In fact, it
remains elusive how well psychological constructs, such as emotion
and cognition, map on the human brain (Laird et al., 2009a; Poldrack,
2006). To enable a reliable mapping of the co-activation pattern for
each individual voxel of the seed region – in spite of the variable and
usually low number of foci located precisely at any particular voxel –
we proceeded as follows. Importantly, this procedure was performed
for each individual seed voxel, i.e., each voxel within the seed region
in the medial premotor cortex. First, we identified for the currently
considered seed voxel the 50 experiments in BrainMap that reported
activation closest to it. This was done by computing for each
databased experiment the distance between the current seed voxel
and the nearest activation of that particular experiment. The 50
closest experiments were then considered to be associated with the
currently assessed seed voxel and selected for further analysis. To
evaluate a potential influence of this criterion, analysis was repeated
using the closest 25, 100 or 250 experiments. It has to be considered,
however, that the density of activation foci may not necessarily be
stationary across the seed region. The outlined approach thus has the
advantage of using the same number of experiments for each seed
voxel but may introduce slight differences between themwith respect
to the distance of the furthest experiment that was included.
Therefore, we repeated the analysis using all experiments reporting
foci within a 4 or 6 mm radius around a particular seed voxel. This
latter approach has the advantage that for each seed voxel the
distance to an activation in the further associated experiment is
identical across all individual seed voxels but has the drawback, that
the number of experiments may vary between seed voxels.

The brain wide co-activation pattern for each individual seed voxel
was then computed by a meta-analysis over the experiments that
were associated with that particular voxel by the procedure outlined
above. That is, experiments were defined by activation at or close to a
particular seed voxel, and quantitative meta-analysis over all foci
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reported in these experimentswas performed to assess how likely any
other voxel throughout the brain co-activates with that seed-voxel.

Meta-analysis was performed using the revised version (Eickhoff
et al., 2009) of the activation likelihood estimation (ALE) approach.
The key idea behind ALE is to treat the foci reported in the associated
experiments not as single points, but as centers for 3D Gaussian
probability distributions that reflect the spatial uncertainty associated
with neuroimaging results. For each experiment, the probability
distributions of all reported foci are then combined into a modeled
activation (MA) map for that particular experiment. The voxel-wise
union of these MA (modeled activation)-values for all experiments
associated with a particular seed voxel then yielded an ALE score for
each voxel of the brain that describes the co-activation probability of
that particular location with the current seed voxel (Fig. 1). No
threshold was applied to retain the complete pattern of co-activation
likelihood. The ALE scores of all voxel within the gray matter (based
on 10% probability according to the ICBM [International Consortium
on Brain Mapping] tissue probability maps) were then recorded
before moving to the next voxel of the seed region.

Cortical parcellation based on co-activation patterns

The brain-wide co-activation profiles for all seed voxels were
subsequently combined into a NS×NB co-activation matrix, where NS

is the number of seed voxels (283) and NB the number of target voxels

(~260,000 voxels located within the gray matter) at 2×2×2 mm3

resolution. Sets of voxels that feature similar brain-wide co-
activation profiles were identified by hierarchical cluster analysis
(Eickhoff et al., 2007; Timm, 2002). In this approach, each voxel
initially forms an individual cluster, and a hierarchy is then built by
progressively merging the least dissimilar cluster to derive succes-
sively larger sets. We used Euclidean distance between the brain-
wide co-activation profiles (ALE scores of all target voxels) as
similarity measure and Ward linkage criterion for cluster merging
(Timm, 2002). To evaluate potential influences of these parameters,
analyses were repeated for all combinations of the different filter
criteria for assigning experiments to a particular seed voxel (cf.
above), distance measures (Euclidean, correlation, and cosine) and
linkage algorithm (weighted, average, single, and complete). Finally,
we also assessed seed voxel clustering using the spectral reordering
approach that has previously been employed for connectivity-based
parcellation using DTI and resting-state data (Johansen-Berg et al.,
2004; Kim et al., 2010). This approach involves first to compute the
cross-correlation matrix of the whole brain co-activation profiles
obtained for the individual seed voxels. The matrix is then reordered
to minimize the cross-correlation values off the diagonal, hereby
forcing closely correlated voxels close to each other. Clusters are then
identified in the reordered matrix as sets of seed voxels whose
connectivity patterns were strongly correlated with each other and
weakly with the rest of the matrix.
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Fig. 1. (A) Location of the seed VOI (brown) and the three exemplary voxels for which co-activation maps are illustrated, displayed on a surface rendering of the MNI single subject
template. The yellow colored exemplary seed voxel 1 is located at −4/−6/+68, seed voxel 2 is located at −2/0/+60, and seed voxel 3 at −6/+12/+48 (all coordinates in MNI
space). (B) Brain-wide co-activation maps of three voxels indicated by the yellow numbers in panel A as revealed by meta-analytical connectivity modeling using ALE meta-analysis
on the brain-wide foci reported in those 50 experiments in BrainMap that featured the closest activation peaks to the respective seed voxels. (C) Co-activation matrix summarizing
the co-activation likelihood (ALE values) of all seed voxels to the rest of the gray matter. The gray matter mask is based on at least 10% probability according to the ICBM
(International Consortium on Brain Mapping). This matrix containing the brain wide co-activation pattern of each individual seed voxel served as the basis for co-activation based
parcellation of the medial premotor seed region.
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Characterization of the derived clusters: Co-activations

Following the co-activation based parcellation of the seed region
into separate clusters, MACM was performed on each of the ensuing
clusters in order to characterize their co-activation profiles. In this
context, “clusters” refer to sets of voxels within the seed region that
was identified by the co-activation based parcellation outlined above
as having similar co-activation patterns to each other but distinct to
the rest of the seed voxels. The co-activation profiles of the different
clusters were obtained by first identifying all experiments in the
BrainMap database that featured at least one focus of activation in a
particular cluster derived from the co-activation based hierarchical
cluster analysis. Then, an ALE meta-analysis was performed on these
experiments as described above. In contrast to the MACM analyses
underlying the co-activation based parcellation, in which the ALE
maps were not thresholded to retain the complete pattern of co-
activation likelihood, statistical inference was now sought.

To establish which regions were significantly co-activated with
one of the clusters identified by the above described co-activation
parcellation of the seed region, ALE scores for the MACM analysis of
this cluster were compared to a null-distribution that reflects a
random spatial association between experiments, but regards the
within-experiment distribution of foci as fixed (Eickhoff et al.,
2009). This random-effects inference assesses above-chance con-
vergence between experiments, not clustering of foci within a
particular experiment. The observed ALE scores from the actual
meta analysis of experiments activating within a particular cluster
were then tested against the ALE scores obtained under this null-
distribution yielding a p-value based on the proportion of equal or
higher random values. The resulting non-parametric p-values were
then thresholded at a family-wise error (FWE) corrected threshold
of pb0.05.

Regions that co-activated with both clusters delineated in the
medial premotor cortex by the co-activation based parcellation
were identified using a minimum-statistic conjunction by comput-
ing the intersection of the thresholded ALE-maps (Caspers et al.,
2010; Kurth et al., 2010). Differences in co-activation patterns not
only describe the features that have driven the differentiation of
the seed region, but also represent hypotheses about functional
connections that may inform subsequent models of effective and
functional connectivity. They were assessed by first performing
MACM separately on the experiments associated with either cluster
and computing the voxel-wise difference between the ensuing ALE
maps. All experiments contributing to either analysis were then
pooled and randomly divided into two groups of the same size as
the two original sets of experiments. That is, if 100 experiments in
BrainMap featured activation in cluster A and 75 featured an
activation in cluster B, the resulting pool of (175) experiments
would be randomly divided into a group of 100 and a group of 75
experiments. ALE-scores for these two randomly assembled groups
were calculated and the difference between these ALE-scores was
recorded for each voxel in the brain. Repeating this process 10,000
times then yielded a null-distribution for the differences in ALE-
scores between the MACM analyses of the two clusters. The
observed difference in ALE scores was then tested against this null-
distribution yielding a p-value for the difference at each voxel
based on the proportion of equal or higher random differences. The
resulting non-parametric p-values were thresholded at pb0.001
and inclusively masked by the respective main effects, i.e., the
significant effects in the MACM for the particular cluster, to focus
inference on regions reliably co-activating with that cluster.

Notably, there is still no established method to correct ALE
difference maps for multiple comparisons. Nevertheless, permutation
of the experiments' associations with either cluster served as a
statistical tool to estimate the magnitude of the difference. Addition-
ally, we opted for a conventional conservative threshold of pb0.001 to

account for intra-laboratory idiosyncrasies, inter-subject variability,
as well as the limited spatial resolution of fMRI and PET. The
conjunction of these aspects allowed for focusing inference on regions
reliably co-activating with one of the clusters.

Characterization of the derived clusters: Function

Functional characterization of the co-activation based clusters is
another crucial aspect, as it provides a first link between the derived
parcellation and the putatively corresponding functional differentia-
tion. Moreover, these characterizations may also provide hypotheses
that may inform explicitly targeted further experiments that may
then confirm a differential response between the defined regions. The
functional characterization of the clusters derived from co-activation
based parcellation of the medial frontal seed region was based on the
BrainMap metadata that describes the included specific mental
process isolated by the statistical contrast of each included experi-
ment. It is important to appreciate that we ran MACM without any
taxonomic constraints to delineate genuine brain networks thatmight
be implicated in diverse brain functions regardless of actual
experiment tasks. Only after that, nodes of the thus derived
“untapped” brain networks were functionally characterized because
this order of steps permits taxonomic profiling of computationally-
derived brain networks, both in a bottom-up fashion. Behavioral
domains (BD) include the main categories of cognition, action,
perception, emotion, interoception, as well as their related sub-
categories. The respective paradigm classes (PC) classify the specific
task employed (a complete list of BDs and PCs can be found in the
Supplementary material and at http://brainmap.org/scribe/). We
analyzed the behavioral domain and paradigm class metadata
associated with each identified cluster to determine the frequency
of domain “hits” relative to its likelihood across the entire database. In
particular, functional roles of the derived clusters were identified by
significant over-representation of BDs and PCs in the experiments
activating the respective cluster relative to the BrainMap database
using a binomial test (pb0.05), corrected for multiple comparisons
using Bonferroni's method (Laird et al., 2009b).

Results

Meta-analytic connectivity mapping

Individual co-activation maps for each voxel within the seed VOI
were computed by ALE meta-analysis over those experiments in
BrainMap that featured the closest activation foci to that respective
seed voxel. Following analysis of all seed voxels, the ALE values at all
voxels in the rest of the brain were then combined into a functional
co-activation matrix, reflecting how likely each seed voxel co-
activated with any other voxel in the brain (Fig. 1).

Cortical parcellation based on co-activation patterns

Hierarchical cluster analysis performed on this matrix, treating
individual seed voxels as observations and the brain-wide co-
activation (ALE scores) as response variables, revealed a separation
of the seed region into two co-activation based clusters that
corresponded exactly to the two activation clusters obtained from
different contrasts of the original fMRI study (Jakobs et al., 2009).
Importantly, this parcellation was stable across all explored analysis
parameters. Each combination of different filter criteria for assigning
experiments to a particular seed voxel, distance measures for quan-
tifying dissimilarity between co-activation profiles and linkage algo-
rithms to assemble clusters yielded exactly the same parcellation
with no single voxel changing attribution (Fig. 2, Supplementary
Figs. 2–3). Finally, the same parcellation was also confirmed by
spectral reordering of the cross-correlation matrix of co-activation
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profiles (Supplementary Fig. 4). Without a priori constraints imposed
on the analysis, cluster formation driven by dissimilarity in co-
activation patterns thus recovered the two original regions from the
combined VOI in a highly robust manner.

Please note that we employed a number of different parameter
combinations as an acid test for the robustness of the obtained co-
activation based parcellations. In fact, finer grained parcellation
into more than two clusters appeared to result in “hyper-
parcellation” already with little reduction of the absolute distance
value. Moreover, separation of the seed region into more than two
clusters demonstrated to be highly dependent on the employed
parameter combination. Both these observations speak for less
distinct functional–connectional properties of the ensuing sets of
voxels when more than two voxel groups were predicted.
Furthermore, the reordered correlation matrix clearly indicated a
parcellation into two clusters of extremely high within-cluster and
very low between-cluster correlation. That is, across all the
different employed approaches, a parcellation into two clusters
emerged as clearly the most robust choice that was least
susceptible to methodological variations (Supplementary Figs. 2–4).

Characterization of the derived clusters: Co-activations

Task-based co-activations of each cluster were delineated by
performing an ALE meta-analysis across all experiments featuring at
least one activation in that region (Fig. 3). Conjunction analysis
revealed an overlap between the thresholded (pb0.05, FWE
corrected) co-activation maps of both clusters in dorsal and ventral
lateral premotor cortex, BA 44, primary motor and somatosensory
cortices, anterior insula, basal ganglia (particularly putamen),
thalamus, superior cerebellum as well as intraparietal sulcus and
adjacent inferior parietal lobule (Fig. 3A). Contrasting the co-
activation maps for the posterior and anterior cluster showed the
clear distinction in functional connectivity pattern underlying the
parcellation of the seed VOI (Fig. 3B). The posterior cluster showed
higher co-activation probabilities in dorsal premotor cortex, primary
motor and somatosensory cortices, cerebellum and basal ganglia
(putamen). In contrast, the anterior cluster showed significantly
higher co-activation probabilities in ventral premotor cortex, middle
frontal gyrus and BA 44, anterior insula and intraparietal sulcus/
inferior parietal cortex. The stable distinction of the two clusters in the

MACM based on nearest 250 experiments

MACM based on nearest 25 experiments MACM based on nearest 50 experiments

MACM based on nearest 100 experiments

MACM based on experiments within 6mmMACM based on experiments within 4mm

Fig. 2. Hierarchical cluster analysis of the co-activation profile matrix (cf. Fig. 1C) revealed a highly reliable separation of the seed voxels into two distinct clusters independent of
filter criterion and cluster parameters (cf. Supplementary Figs. 2–4) . Projecting the voxels back onto their brain location revealed that these clusters were spatially continuous and
corresponded to an anterior and posterior cluster in the medial premotor cortex (cf. Supplementary Fig. 1).
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Fig. 3. (A) Conjunction analysis over the MACM maps for the two main clusters indicates that several fronto-parietal regions show significant co-activation with both medial
premotor regions. (B) Contrasting the MACM maps revealed that the anterior cluster showed significantly higher co-activation probabilities with ventral premotor, inferior frontal
and posterior parietal cortices. The posterior cluster showed significantly higher co-activation probabilities with dorsal premotor cortex, primary sensory-motor cortices, cerebellum
and basal ganglia. It should be noted that, at the given threshold, many brain regions appear both in the conjunction aswell as the contrast analysis. This indicates voxels, which show
functional connectivity with both clusters, which, however, was significantly stronger for one of them. That is, the MACM maps of both clusters differ mainly quantitatively, i.e.,
connectivity likelihood between cluster and target voxels. (C) Functional characterization by behavioral domain and paradigm class metadata. The red/green bars denote the number
of foci for that particular behavioral domain/paradigm class within the anterior/posterior cluster. The gray bars represent the number of foci that would be expected to hit the
particular cluster if all foci with the respective behavioral domain or paradigm class were randomly distributed throughout the cerebral cortex. That is, the gray bars denote the by-
chance frequency of that particular label given the size of the cluster. This analysis indicated that the posterior cluster was strongly related to motor functions whereas the anterior
cluster showed lower specificity but was activated predominantly by more cognitive processes, such as language, working memory, and task switching.
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above analyses thus seems to originate from different co-activation
likelihood of the posterior and anterior seed region with areas
implicated in sensory-motor functions and cognitive control,
respectively.

Characterization of the derived clusters: Function

Functional characterization using the meta-data of the experi-
ments in BrainMap confirmed these results. All behavioral domains
(BDs) and paradigm classes (PCs) that were significantly overrepre-
sented in experiments activating the posterior cluster were related to
motor functions (execution, imagery and learning, overt speech and
saccades). The only exception was a significant overrepresentation of
visual motion experiments that may be attributable to the high
prevalence of (reflexive) eye movements in these tasks (Fig. 3C). In
spite of the similar number of experiments, conspicuously fewer PCs
were overrepresented in the anterior VOI indicating lower specificity
to particular cognitive processes (based on the current taxonomy).
Strikingly, none of the overrepresented BDs and PCs related to motor
behavior. Rather this region was primarily activated in experiments
assessing “higher” cognitive processes, such as working memory,
language and task switching.

Differentiation at the subsequent level of linkage

At the next lower linkage, two sets of voxels within the posterior
cluster were separated, albeit cluster attribution was less stable than
for the main clusters (Supplementary Fig. 5). When plotting the
location of the unanimously defined voxels, the sub-clusters corre-
sponded to the anterior respectively posterior portion of the caudal
cluster in the two-cluster solution. The posterior sub-cluster showed
higher probability for co-activation with primary motor and somato-
sensory cortex, as well as with inferior frontal cortex just posterior to
BA 44 (Fig. 4). The anterior sub-cluster, in contrast, co-activated more
strongly with the premotor cortex, left BA 44 and the parietal lobe.
Mirroring these smaller differences in co-activation pattern, associ-
ated BDs and PCs were highly similar and varied mainly in relative
position (Fig. 4). In summary, the first two levels of linkage thus
indicate that the more anterior a voxel is located in the seed region,
themore likely it is to co-activate with pre-frontal and parietal regions
rather than the primary sensory-motor cortices.

Testing hypotheses on the function of the co-activation based clusters

Two main hypotheses on functional differentiation and connec-
tivity were derived from the performed meta-analytical modeling.
Behavioral domain analyses indicated that the two main clusters
derived from the hierarchical cluster analysis of co-activation profiles
would be differentially activated by motor and working memory
tasks. This hypothesized functional differentiation was tested in an
fMRI experiment involving a working memory (counting E's among a
series of visually presented letters) and a motor task (alternating
tapping with the left and right index finger at a self-paced frequency)
in 56 subjects (cf. Supplementary methods). These task-based fMRI
data were acquired as part of an ongoing project. As suggested by the
functional characterization via the BrainMap meta-data, the anterior
cluster was significantly stronger activated by the working memory
task while the posterior one was significantly stronger activated by
the motor paradigm (Fig. 5). Moreover, the whole-brain activation
patterns (voxel-level FWE corrected pb0.05) closely mirrored the
networks obtained from the MACM analysis. This analysis thus fully
confirmed the hypothesis about the functional differentiation be-
tween the co-activation based clusters.

Testing hypotheses on the connectivity of the co-activation
based clusters

By significant differences in co-activation likelihood, MACM
indicated differential connectivity of the anterior and posterior
cluster with inferior frontal, prefrontal and parietal as well as
sensory-motor and dorsal premotor cortices, respectively. This
hypothesis was explicitly tested by performing resting-state
functional connectivity analysis in 62 subjects (cf. Supplementary
methods). In particular, we first identified all local maxima (peaks)
in the MACM difference map. For each of these peaks we then
computed the low-frequency resting state correlation with the two
medial premotor seed regions. We tested the hypothesis that those
peaks that showed significantly higher co-activation likelihood with
the anterior than the posterior cluster would also show significantly
stronger resting state connectivity and vice versa. Statistical analysis
confirmed that all those regions that showed significantly higher co-
activation likelihoods with the anterior cluster also showed
significantly stronger (Bonferroni-corrected pb0.05) resting state
connectivity with that cluster. In turn, all four regions (bilateral
putamen, left IFG/frontal operculum) showing higher co-activation
probabilities with the posterior cluster also featured significantly
higher resting state correlation with it. The hypotheses derived from
the MACM analysis about differential connectivity of the two co-
activation defined clusters thus again received convincing support
from an independent dataset.

Discussion

Here, we outlined how co-activation patterns across neuroimaging
experiments may be used to identify cortical modules in a model-free
manner. Using this approach, we showed a highly robust distinction
in task-based functional connectivity between two medial premotor
regions that could be linked to differences in functional properties.
Whereas an anterior cluster was associated with cognitive functions
and co-activated with pre-frontal and parietal cortices, the posterior
onewas activated by action-related tasks and co-activatedwith (pre-)
motor areas.

Methods for connectivity-based parcellation

We applied hierarchical cluster analysis (Eickhoff et al., 2007;
Timm, 2002) to combine the individual seed voxels into larger
regions, showing that the two main clusters remained completely
stable, with no single voxel changing attribution. In contrast, the
first connectivity-based parcellation applied a spectral reordering
algorithm to the connectivity cross-correlation matrix (Johansen-
Berg et al., 2004), identifying clusters in the reordered matrix as
sets of seed voxels whose connectivity patterns were strongly
correlated with each other and weakly with the rest of the matrix.
Subsequent studies also employed k-means clustering to identify
sets of seed voxels with similar connectivity (Kim et al., 2010; Klein
et al., 2007; Tomassini et al., 2007). While all of these approaches
yielded the same parcellation of our dataset, hierarchical cluster
analysis has the major advantage of allowing parcellation of the
seed regions at various levels of linkage. That is, there is no need to
specify a priori the number of clusters to be identified. Instead, an
organizational hierarchy is generated that should, in theory, allow a
multi-layered delineation of cortical fields from individual modules
to larger regions.

Organization of the medial pre-motor cortex

The pre-SMA is conceptualized to be more strongly involved than
the SMA inmore complex, “cognitive” aspects of motor behavior, such
as motor selection or inhibition (Picard and Strick, 1996; Rizzolatti
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and Luppino, 2001; Vogt et al., 2007). Supporting this view,
connectivity tracing in non-human primates revealed that the pre-
SMA receives afferences from the inferior parietal lobule (Luppino et
al., 1993) and the prefrontal cortex. Functional characterization and

co-activation pattern of the anterior cluster relate very well to these
pre-SMA properties. Invasive tracing, moreover, provided no evidence
for direct connections toward the primary motor cortex from pre-
SMA but only from SMA proper (Luppino et al., 1993; Rizzolatti and
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Fig. 4. MACM maps and functional characterization of the two sub-clusters jointed at the second-to-last linkage. As indicated by the top panel, the posterior sub-cluster showed
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would be expected to hit the particular sub-cluster if all foci with the respective label were randomly distributed.
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Wolpert, 2005). Based on these observations and functional activation
studies, the SMA has been implicated in executive aspects of motor
control, e.g. movement initiation (Chouinard and Paus, 2006;
Cunnington et al., 2002; Eickhoff et al., 2008a; Picard and Strick,
1996). This is well reflected in the recruitment of the posterior cluster

by movement execution and its co-activation with lateral premotor,
primary motor, and somatosensory cortices. Together these compar-
isons allow to confidently relate the anterior field to pre-SMA and the
posterior one to SMA proper (Picard and Strick, 1996; Rizzolatti and
Wolpert, 2005).
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Aspects of brain connectivity

How does our approach compare to previous connectivity-based
parcellation approaches andwhat could be the specific contribution of
MACM to exploring brain connectivity? To answer these questions,
the three major concepts of brain connectivity, anatomical, effective
and functional connectivity, will be briefly reviewed.

Anatomical connectivity is predominantly assessed based on
diffusion tensor imaging (DTI). On these, tractography algorithms
may be employed to derive information about the most likely fiber
tract direction from particular seed or the course and strength of
pathways connecting two different regions of the cortex (Behrens
et al., 2003; Ramnani et al., 2004). Nevertheless, it still has to be
emphasized that diffusion-based tractography does not provide
information about anatomical connectivity sensu stricto, i.e. axonal
connectivity as revealed by tracer studies in macaques (Pons and
Kaas, 1985), but can merely assess the presence and strength of
macroanatomical fiber bundles between regions. Moreover, DTI
does not allow to directly infer the nature of functional interactions
using the respective pathways.

Effective connectivity is defined as the “influence a neural system
has on another”, i.e., (context-dependent) interactions among differ-
ent nodes in neural networks (Friston, 2002). In the widely used
Dynamic Causal Modeling (DCM) and Structural Equation Modeling
(SEM) approaches, this is assessed by taking an explicit network
perspective and modeling the interactions between regions as a
function of the experimental context (Buchel and Friston, 1997;
Stephan et al., 2007). The derived model parameters then describe
effective connectivity. Other approaches such as psychophysiological
interactions or Granger causalitymapping are used to identify regions,
showing a context-dependent change in their coupling with a
particular seed region (Friston et al., 1997; Goebel et al., 2003) under
the assumptions of the employed model.

Functional connectivity, finally, is a heterogeneous concept,
attributable to its definition as the “temporal correlation of spatially
distant neurophysiological events” (Friston et al., 1996). It thus
summarizes any analysis that assesses correlations among brain
signals without the explicit modeling of the underlying networks (as
in effective connectivity), ranging from spike train correlations
(Nuding et al., 2009) to EEG coherence (Gross et al., 2001) and various
fMRI basedmethods. The latter correlate regional BOLD signal changes
in order to quantify the degree of functional connectivity between
them or identify regions that correlate with a particular seed
(Hampson et al., 2002; Ramnani et al., 2004; Xiong et al., 1999).
Such analyses may be performed on experimentally perturbed time-
courses as an approach to task-based connectivity analysiswithout the
a priori assumptions of effective connectivity models. However, they
gained particular popularity in the context of resting state analyses.
While the underlying physiology of correlations in the absence of a
structured task remains somewhat elusive, it seems plausible that
“resting” state, as a mixture of various cognitive processes, may
likewise sample the repertoire of operations brain networks can
perform (Buckner and Vincent, 2007; Smith et al., 2009). Finally,
MACMmay also be regarded as an approach to functional connectivity
analysis. In line with the original definition of functional connectivity
and the tradition of spike coincidence analyses, MACM assesses
correlation of activation (across experiments) between brain regions.
In contrast to functional connectivity analyses on fMRI time-series,
however, not changes in the voxel-specific BOLD signal over scans but
rather occurrences of activation across many different experiments
represent the units of observation in MACM analyses.

Comparison to anatomical and resting state connectivity

The observed co-activation patterns are in good agreement with
the (pre-) SMA connectivity as delineated by DTI tractography

(Johansen-Berg et al., 2004). This concordance is noteworthy as DTI
and co-activation represent unrelated techniques performed on
independent samples. Together with previous computational model-
ing (Honey et al., 2007), this supports the notion of a good congruency
between anatomical and functional connectivities. Combining MACM
and DTI analyses on the same seed region may thus provide an
indication of the anatomical connections by which functional
networks are implemented and vice versa. In spite of the congruency,
however, some differences are noteworthy. e.g., the putative pre-SMA
cluster showed dense anatomical connections to the medial parietal
cortex (Johansen-Berg et al., 2004), which were not mirrored by co-
activation data. Several reasons might explain the observed discrep-
ancy. First, the mentioned authors assessed the anatomical connec-
tivity between pre-SMA and medial parietal cortex by means of
diffusion tensor imaging (DTI), while we employedMACM. These two
approaches examining brain connectivity are subject to different
sources of measurement errors and noise that may vary systemati-
cally or haphazardly. Second, there are major conceptual differences
between anatomical connectivity, a task-independent property of the
brain, and functional connectivity, a task-dependent property of the
brain. Third, this might also entail an underestimation of those
functional connections, as revealed by MACM that are challenging to
effectuate under the constraints of scanner-compliant task designs.

Correlation of resting state fMRI fluctuations in a medial premotor
seed VOI with the rest of the brain also showed a differentiation into
two regions (Kim et al., 2010) that closely match those from the DTI
parcellation and the current results. This congruency strongly
supports the correspondence of the brain's functional architecture
during rest and activation revealed by independent component
analysis (Smith et al., 2009) and demonstrated that it also extends
to seed-based analyses and connectivity based parcellations. The
present analysis now shows how both approaches may be combined,
in particular, how co-activation patterns across many neuroimaging
experiments may be used to derive hypotheses that can subsequently
be tested in independent resting-state datasets. This combinationmay
provide a very important route for further research, as it would
combine the strength of either method. Resting state analysis is
readily performed even in clinical populations and may yield
information about subject or group specific functional connectivity
patterns but is dependent upon a motivated choice of the assessed
regions and often difficult to associate with functional characteristics.
MACM, on the other hand, allows the delineation of robustly co-
activated networks across many different experimental designs and
yields statistically testable associations with functional domains but is
unsuited to derive information about a particular population of
interest or even connectivity in individual subjects. It becomes
evident that combining the large scale approach of MACM with the
possibility of subject-level resting state functional connectivity
analysis may offset the drawbacks and combine the strengths of
each approach. In particular, MACM may be used to build hypotheses
about the differential connectivity patterns of cortical modules and
link them to particular cognitive, sensory or motor functions, as
demonstrated here for the medial premotor cortex. Resting state
functional connectivity analysis informed by the MACM results may
then be used to test this hypothesis and further characterize it, e.g., by
relating the degree of functional connectivity to neuropsychological
or clinical measures obtainable in single subjects. Likewise, functional
connectivity analyses on time series obtained for tasks informed by
the MACM results may be used to test for the functional dissociations
implicated by the co-activation patterns.

Contribution of MACM as a hypothesis generation approach
for neuroimaging

Importantly, the functional nature of clusters identified by DTI or
resting-state connectivity could only be qualitatively interpreted by
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experts. In comparison, the probably most distinct advantage of co-
activation analysis is the availability of functional meta-data on the
experiments associated with a particular cluster (Laird et al., 2009b).
Using this information, functional characteristics of identified cortical
modules may be delineated by statistical assessment of the functional
domains or paradigms that are associated with the observed co-
activation patterns. MACM may hence provide the crucial link
between connectivity-based parcellation and functional properties.
It should be appreciated that connectivity-based parcellation not only
based on BrainMap but also based on DTI and resting state data can be
further functionally characterized using MACM. In other words, task-
relatedness of a cluster can be explored using BrainMap regardless of
whether that cluster has been derived from task-dependent (fMRI,
BrainMap), task-independent (resting state data) or structural (DTI)
imaging information. In this context, the probably most important
role that MACM may fulfill is the generation of hypotheses for
targeted neuroimaging experiments. Today's functional neuroimag-
ing has a multitude of methods and approaches for testing hypotheses
about the location of a particular cognitive function or about a
potential dissociation of the neural substrates of different processes.
However, neuroimaging is less well suited to delineate cortical
modules and create new hypotheses about the functional differenti-
ation between them. That is, if the tasks that differentiate between the
different modules within a particular region are known, fMRI may be
used to specifically test this dissociation. If they are unknown,
experiments cannot be specifically designed to reveal a functional
distinction. Here, MACM may be in a unique position in that it allows
summarizing the findings of thousands of previous neuroimaging
findings in a statistically rigorous fashion. Hereby, it can identify those
functional domains and paradigms that are associated with a
particular cortical module or area and generate hypotheses about
how two neighboring regions, e.g., defined by their co-activation
patterns, may be differentially activated. In the present case, this is
exemplified by a proof of principle analysis showing that the
hypothesis on the functional dissociation between both clusters
derived from the co-activation based parcellation could indeed be
confirmed in an independent fMRI study.

Conclusions and outlook

Following earlier reports that cortical modules may be defined by
differences in anatomical connectivity (Johansen-Berg et al., 2004;
Klein et al., 2007; Tomassini et al., 2007) or resting state correlations
(Kim et al., 2010) we demonstrated that SMA and pre-SMA may be
distinguished by amodel-free analysis of co-activation patterns across
activation studies. Analysis of the behavioral domain and paradigm
class meta-data (Laird et al., 2009a) moreover allowed the delineation
of functional characteristics for the ensuing cortical modules. Using
this approach, co-activation maps and functional characterization via
neuroimaging databases provide valuable tools for generating
hypotheses that may be explicitly tested in targeted neuroimaging
experiments as demonstrated in this report. A challenging task for
future research will be to compare and integrate cortical maps from
different connectivity-based approaches. DTI, resting state analyses,
and MACM each focus on a different aspects of connectivity, and we
therefore predict that in spite of their good convergence, each capture
different features of cortical organization (Eickhoff et al., 2010; Honey
et al., 2007; Ramnani et al., 2004). In addition, a necessary step toward
understanding cortical organization is to relate connectivity-defined
modules and functional differentiations to microstructural maps of
the human cerebral cortex (Amunts et al., 2007; Eickhoff et al., 2005;
Eickhoff et al., 2008b; Zilles et al., 2002). It remains to be tested if
changes in connectivity profiles coincide with the histologically
defined borders, or if they represent two largely independent
principles of cortical organization, whose intersection constitutes
the fundamental modules of functional specialization.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.05.021.
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