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Abstract: Neuroscience imaging is a burgeoning, highly sophisticated field the growth of which has been
fostered by grant-funded, freely distributed software libraries that perform voxel-wise analyses in anatomi-
cally standardized three-dimensional space on multi-subject, whole-brain, primary datasets. Despite the
ongoing advances made using these non-commercial computational tools, the replicability of individual
studies is an acknowledged limitation. Coordinate-based meta-analysis offers a practical solution to this
limitation and, consequently, plays an important role in filtering and consolidating the enormous corpus of
functional and structural neuroimaging results reported in the peer-reviewed literature. In both primary
data and meta-analytic neuroimaging analyses, correction for multiple comparisons is a complex but criti-
cal step for ensuring statistical rigor. Reports of errors in multiple-comparison corrections in primary-data
analyses have recently appeared. Here, we report two such errors in GingerALE, a widely used, US
National Institutes of Health (NIH)-funded, freely distributed software package for coordinate-based
meta-analysis. These errors have given rise to published reports with more liberal statistical inferences
than were specified by the authors. The intent of this technical report is threefold. First, we inform authors
who used GingerALE of these errors so that they can take appropriate actions including re-analyses and
corrective publications. Second, we seek to exemplify and promote an open approach to error manage-
ment. Third, we discuss the implications of these and similar errors in a scientific environment dependent
on third-party software. Hum Brain Mapp 00:000–000, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Human neuroscience imaging—as distinguished from clin-
ical, diagnostic imaging—most commonly uses noninvasive,
tomographic, whole-brain, image-acquisition modalities (e.g.,
magnetic resonance imaging, positron emission tomography,
and single-photon emission tomography) and grant-funded,
non-commercial software to make inferences regarding the
structural and functional organization of the human brain in
development, in adulthood, in aging, and in a wide variety of
neurologic, psychiatric and systemic conditions in an ongoing
and programmatic manner [Bandettini, 2012; Rosen and
Savoy, 2012]. Despite the impressive power of the neurocom-
putational techniques shared freely in this field, there are
notable limitations. In particular, the generalizability of the
information that can be gleaned from a single neuroimaging
study is necessarily limited both in reporting differences in
activation patterns between task conditions and in reporting
differences in grey-matter volume between subject groups
[Weinberger and Radulescu, 2015]. Factors contributing to
these limitations include sample size (small samples having
lower power and higher potential for biased sampling than
large samples), an extraordinary degree of experimental-
design flexibility and analytic flexibility (both permitting sub-
stantive methodological variations between studies apparent-
ly reporting on the same effect in the same condition), and the
indirect nature of the neuroimaging measures used vis-�a-vis
the inferred neuronal physiology and pathology [Button
et al., 2013, Carp, 2012; Glatard et al., 2015; Rottschy et al.,
2013]. Correction for multiple comparisons of datasets
representing the brain by hundreds of thousands of voxels
(i.e., individual, location-specific data samples) is a complex
but critical step for ensuring statistical rigor, but one that
has proven particularly problematic. When combined with
publication bias (suppression of negative results) and an all-
too-common tendency toward overly enthusiastic interpreta-
tions of the significance of individual primary-data reports,
these factors necessarily foster concerns regarding the repro-
ducibility of neuroimaging results that are similar in import
to those voiced in the psychological sciences [Open Science
Collaboration, 2015].

Coordinate-based meta-analysis offers a powerful remedy
for the lack of generalizability potentially impacting any
individual neuroimaging study. The vast majority of the
neuroscience imaging literature—several tens of thousands of
peer-reviewed publications—uses anatomically standardized
stereotaxic space (x-y-z coordinates referenced to a published
anatomical template) as a framework within which results
are computed and reported, typically as local maxima of sig-
nificant statistical contracts. This standard has been employed
since the inception of the field [Fox et al., 1988; Fox and

Mintun, 1989; Friston et al., 1991], and its impact has been
repeatedly reviewed [Fox, 1995; Fox, Parsons and Lancaster,
1998; Fox et al., 2014]. When sufficiently large subsets of this
literature are combined using rigorous selection criteria and
appropriate statistical methods, robust insights into the func-
tional and structural organization of the human brain and its
disease processes can be obtained [Yarkoni et al., 2010;
Crossley, Fox and Bullmore, 2016; Eickhoff and Etkin, 2016].
As with primary-data analyses, coordinate-based meta-
analyses are performed voxel-wise over the entire brain and
also apply corrections for multiple comparisons.

Activation Likelihood Estimation (ALE) was one of the
first algorithms developed for coordinate-based meta-analy-
sis [Turkeltaub et al., 2002] and remains one of the most
widely used (http://brainmap.org/pubs). A core concept of
the ALE algorithm is to model reported x-y-z addresses as
centroids of 3-D Gaussian probability distributions, thereby
accommodating the spatial uncertainty of neuroimaging
findings caused jointly by inter-individual neuroanatomical
variability and the intrinsic signal-to-noise and spatial-
resolution limitations of non-invasive neuroimaging modali-
ties. Since its introduction, ALE has benefitted from a series
of functional enhancements, most notably for present pur-
poses, in its corrections for multiple comparisons. The origi-
nal implementation of ALE applied no correction for
multiple comparisons [Turkeltaub et al., 2002]. Corrections
based on false-discovery rate [FDR, Laird et al., 2005] and on
cluster-level and voxel-level family-wise error (FWE) esti-
mation [Eickhoff et al., 2012] were subsequently added.
Other developments include the replacement of the initial
fixed-effects modeling with random-effects analyses of
convergence over experiments rather than individual foci
[Eickhoff et al., 2009] and a correction to avoid summation
of within-group effects [Turkeltaub et al., 2012]. In addition,
algorithms have been provided for meta-analytic contrast
analyses using fixed-effects [Laird et al., 2005] and random-
effects [Eickhoff et al., 2011] models.

The most widely used implementation of the ALE algorithm
is GingerALE, a software application distributed as part of the
BrainMap meta-analysis environment and software suite [Fox
and Lancaster, 2002; Laird et al., 2009, 2011; Fox et al.,
2014; http://brainmap.org/ale]. GingerALE has included
FDR multiple-comparison correction since V1.0, and has
included voxel- and cluster-level FWE correction since V2.2.
Implementation errors in FDR were first suspected in May,
2015, when inconsistencies were noted in the output of large-
scale, replication simulations performed by a member of the
BrainMap user community and reported to the BrainMap
development team. The source of the inconsistencies was iden-
tified rapidly, and a new build (V.2.3.3) was released within
weeks. The error in the FWE correction was first suspected in
January, 2016, also via a report from a BrainMap user-
community member. This error was confirmed, identified and
corrected with a new build (V2.3.6) released in April, 2016.
Both errors and their corrections were described on the
BrainMap online forum (http://www.brainmap.org/forum).

Abbreviations

ALE Activation likelihood estimation;
FEW Family-wise error;
NIH National Institutes of Health
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Posting errors in this manner is common practice among
software developers in the field and this transparency is to be
commended. However, this valuable information is poorly
discoverable and cannot easily be cited by the users when
writing up their findings. In the following, we describe these
implementation errors and their potential impact; we make rec-
ommendations for corrective actions; and, we discuss this
meta-analysis-specific situation in the larger context of current
neuroimaging research, suggesting potential future manage-
ment strategies.

ERROR IN THE FDR CORRECTION CODE

FDR thresholding is designed to control the expected pro-
portion of errors among rejected hypotheses, i.e., false dis-
coveries. GingerALE’s implementation of FDR uses the
Benjamini–Hochberg procedure, which starts by converting
the 3-D P-value image into a sorted 1-D array of ascending P
values. The sorted P values are then compared in a step-up
fashion against a boundary criterion depending on the over-
all number of parallel tests and assumptions regarding inde-
pendence. Critically, a small mistake in the customized code
for sorting floating-point numbers (P values) has persisted
until GingerALE 2.3.3. As a result of this error, the P values
were not completely sorted, leaving some high P values dis-
tributed through the lower P values at the beginning of the
sorted vector. This error right-shifts the “observed” P values
relative to the line setting the boundary criterion and allows
P values that should have been above the cut-off to remain
underneath it. That is, the effective threshold became too
lenient and did not fully control the FDR at the desired level.

The impact of this error on FDR-corrected inference in
GingerALE is heterogeneous and dataset specific because, in
FDR, the corrected significance of a particular location
depends on the overall shape of the curve of sorted P values.
Also contributing to the variability of the effect, the magni-
tude of the sorting error depends on the dataset, in particu-
lar the distribution of P values therein and their spatial
location, i.e., initial indexing. Ultimately, the potential
impact of this coding error is highly dependent on the prop-
erties of the individual study, though it will almost inevita-
bly lead to thresholds that are too liberal. Generally this will
mean that with re-analysis the observed cluster sizes will be
smaller than previously reported and that smaller clusters
may not reach significance. Actual ALE scores and peak
locations locations should be unaffected.

ERROR IN THE CLUSTER-LEVEL

CORRECTION CODE

Cluster-level FWE thresholding is designed to apply a
“cluster-forming threshold” (typically and standard in Gin-
gerALE: P< 0.001), and then compare the size of the individ-
ual clusters in this excursion set to a distribution of cluster
sizes arising from the same initial threshold under a null-
hypothesis of random spatial location. In the non-parametric,

Monte-Carlo approach for establishing this null-distribution
in the context of ALE, foci are randomly distributed through-
out the brain followed by application of the cluster-forming
threshold. The size of the largest cluster is recorded, and the
procedure repeated many thousands of times. By removing
clusters in the actual excursion set that are smaller than the
top 5% of the recorded values, the cluster-level FWE is con-
trolled given that only 5% of all random realizations of the
null-hypothesis will entail one or more clusters larger than
the ones that were deemed significant.

Cluster-level FWE thresholding was introduced into
GingerALE in V2.2 and, unfortunately, the procedure for
establishing the null-distribution of cluster-sizes through
V2.3.5 contained a small but important error. Rather than
recording the size of the largest cluster in the excursion
set, versions of GingerALE before V2.3.6 recorded all clus-
ter sizes following application of the cluster-forming
threshold on the data generated under the null-hypothesis.
This approach yielded thresholds that did not control the
FWE of the clusters, but rather resulted in inference based
on uncorrected cluster-level P values. While these are sub-
stantially more conservative than uncorrected P values at
the voxel-level given the two-step inference and initial
cluster-forming threshold, the use of uncorrected cluster-
level P values still resulted in inadequately liberal infer-
ence. The overall effect will be that some smaller clusters
will not reach significance.

SPECIFIC RECOMMENDATION FOR STUDIES

USING THE AFFECTED VERSIONS OF

GINGERALE

We recommend that published meta-analyses using the
GingerALE versions with implementation errors in the
multiple-comparisons corrections be repeated using the
latest version of GingerALE (V2.3.6), and the results com-
pared to those of the original report. Depending upon the
magnitude and potential impact of the differences, authors
should consider corrective communications in consultation
with the journal in which their original report appeared,
as discussed below.

When weighing their course-of-action options, we sug-
gest authors consider the argument that unintended errors
in reporting statistical thresholds do not necessarily invali-
date the results and conclusions of their published studies.
Choice of a statistical threshold and the ensuing trade-off
between type-I and type-II errors is, at base, an arbitrary
and ultimately subjective decision [Lieberman and Cun-
ningham, 2009]. On the other hand, readers should expect
to receive correct information about the statistical thresh-
olds applied.

We also note that a case can be made that even correctly
performed voxel-wise FDR correction may be inappropri-
ate for inferences on topological features such as regions
of significant convergence of a smooth dataset [Chumbley
and Friston, 2009]. This shortcoming of FDR was recently
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confirmed in a large-scale simulation study [Eickhoff and
Etkin, 2016], which demonstrated that voxel-level FDR
correction entails both relatively low sensitivity and a high
susceptibility to false-positive findings. Moreover, that
work also highlighted another negative property of FDR
thresholding, namely that the chance of a voxel being
declared significant depends on the strength of conver-
gence in other parts of the brain [Genovese et al., 2002].
For maximal statistical rigor, FWE thresholding should be
used for ALE analyses in preference to FDR. Further, to
have sufficient power to detect moderately sized effects,
ALE analyses should be based on workspaces containing
17-20 experiments or more [Eickhoff and Etkin, 2016].

GENERAL CONSIDERATIONS ON THE

EFFECTS OF ERRORS IN NEUROIMAGING

SOFTWARE

Fully automated, voxel-wise, whole-brain, image-analysis
methods concurrently analyzing data from multiple subjects
in anatomically standardized 3-D arrays were first introduced
more than twenty-five years ago [Fox et al., 1988; Friston
et al., 1991]. As these statistical parametric imaging methods
have advanced in sophistication, standardization, ease-of-
use, and community acceptance, they have largely sup-
planted user-scripted tools. Following a “survival of the
fittest” evolutionary process, the vast majority of neuroimag-
ing researchers now rely on a limited number of grant-
supported, freely distributed, non-commercial software
libraries with SPM [Ashburner, 2012], FSL [Jenkinson et al.,
2012] and AFNI [Cox, 2012] being among the most popular.
While the wide scope of use of these packages, inviting scruti-
ny and cross validation by many researchers, will eventually
detect and eliminate errors [Nosek et al., 2015], the impact of
as-yet-undetected errors on the published literature can be
substantial. This predicament is best illustrated by a recent
study that identified a problem in the multiple-comparison
correction strategies implemented in several widely used
packages, which collectively effect several thousand peer-
reviewed neuroimaging publications [Eklund et al., 2016].

Implementation errors (reported here) and algorithmic
errors [Eklund et al., 2016] in widely used image-analysis
software creates the unfortunate situation wherein well-
intentioned researchers who have followed developers’ rec-
ommendations and established best practices may still have
published flawed results—typically erroneous statistical
confidence levels or cluster sizes. To best serve the neurosci-
entific community, corrections to the literature should be
two-fold. First, the software developer should highlight the
errors and need for re-analysis, as we are doing here.
Second, the authors should be encouraged and enabled to
self-correct such errors in a concise, rapidly implemented,
non-pejorative manner. Given that the magnitude and
impact of the errors will vary, the most appropriate self-
correction measure will also vary. For minimal corrections, a
comment on PubMed Central confirming the previous

results should suffice. For minor corrections, publication of
an erratum or corrigendum linked to the original publication
may be needed. For more substantive corrections, a
Comment-type article citing the original publication likely is
the appropriate course of action. For older or underpowered
meta-analyses, particularly in domains for which additional
publications have appeared in the interim, a more compre-
hensive, original publication will likely be the most valuable
contribution to the literature.

In light not only of the present error report but also giv-
en the wider implications of the topic as noted above, we
believe there is a need for dialogue among journal editors,
scientific organizations (e.g., the Organization for Human
Brain Mapping), and the neuroscience community at large
to develop a generally acceptable best-practices policy. We
hope that this article encourages the more open reporting
of errors in public software or data and also serves as a
starting point for this important dialogue.
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