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Abstract: Functional volumes modeling (FVM) is a statistical construct for metanalytic modeling of the
locations of brain functional areas as spatial probability distributions. FV models have a variety of
applications, in particular, to serve as spatially explicit predictions of the Talairach-space locations of
functional activations, thereby allowing voxel-based analyses to be hypothesis testing rather than
hypothesis generating. As image averaging is often applied in the analysis of functional images, an
important feature of FVM is that a model can be scaled to accommodate any degree of intersubject image
averaging in the data set to which the model is applied. In this report, the group-size scaling properties of
FVM were tested. This was done by: (1) scaling a previously constructed FV model of the mouth
representation of primary motor cortex (M1-mouth) to accommodate various degrees of averaging
(number of subjects per image ! n ! 1, 2, 5, 10), and (2) comparing FVM-predicted spatial probability
contours to location-distributions observed in averaged images of varying n composed from randomly
sampling a 30-subject validation data set. Hum. Brain Mapping 8:143–150, 1999. ! 1999 Wiley-Liss, Inc.
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INTRODUCTION

Functional volumes modeling (FVM) is a strategy by
which spatial probability contours for brain functional
areas can be derived from quantitative metanalysis of a
converging body of group-mean, brain-activation stud-
ies [Fox et al., 1997]. Within the growing family of
quantitative metanalysis methods appearing in the
brain-imaging literature [reviewed in Fox et al., 1998],
FVM is the most mathematically formalized and poten-
tially the most useful as an analytic tool. That an FVM
entirely derived from published, group-mean input

data can predict the mean location and spatial distribu-
tion of responses in a sample of individual subjects has
recently been demonstrated, modeling the mouth rep-
resentation of primary motor-sensory cortex (M1-
mouth) [Fox et al., in review]. What remains to be
demonstrated is whether FV models can be scaled to
accommodate intersubject averaging in the data sets to
which they are applied.

A variety of applications are envisioned for FV
models. In particular, FVM can serve as spatially
explicit predictions in Talairach space of functional
activations expected in a brain-mapping experiment.
Having formal a priori predictions of expected re-
sponses will permit voxel-based analysis of the result-
ing data to be explicitly hypothesis testing. In addition
to increasing scientific rigor, this will increase statisti-
cal power by restricting the total volume within which
responses are sought, thereby lessening the severity of
correction for multiple comparisons.
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As image averaging is often applied in the analysis
of functional images, an important requirement of
FVM is that a model can be scaled to accomodate any
degree of intersubject averaging in the data set to
which the model is applied. The Central Limit Theo-
rem predicts well-behaved reduction of the standard
error of the mean as a sample size increases. That is,
the variance among a sample of m means, each com-
puted from n individual values, will be lower than the
variance in a sample of individual values by a factor of
1/n. Whereas well-behaved reduction of the standard
error of the mean is well established for numeric
averaging, it is not established for location coordinates
within averaged images. Image averaging is well
behaved with respect to intensity values, as these are
true numeric averages computed at each voxel [Fox et
al., 1988]. However, with respect to the locations of
local maxima, the effects of image averaging are not so
straightforward. A local-maximum in a functional
image is determined by a 3D intensity contour. In an
multisubject image, the intensity contour of a local
maximum is a function of the actual intensity values in
each individual image and by the degree of spatial
overlap among the response loci. Individual images
with more intense activations weight the averaged
image more heavily. Images with responses lying far
from the group-response centroid weight the averaged
response locus little or not at all. Thus with respect to
location coordinates, image averaging creates an inten-
sity weighted mode. As a result, there is no mathemati-
cal guarantee that the decrease in variance among
response loci in averaged images will be the same as
that obtained by averaging locations coordinates from
individual-subject images. The purpose of this report
was to empirically validate: (1) the model assumptions
underlying FVM group-size scaling, and (2) FVM

predictive accuracy for group-mean data across a
range of group sizes.

METHODS

Literature metanalysis of M1-mouth and functional
volume modeling

The mean location and location variability of M1-
mouth were estimated from the coordinate-referenced,
group-mean, brain-activation literature. Candidate
studies were limited to those: (1) on normal subjects,
(2) using overt oral tasks. Eight such studies were
identified [Petersen et al., 1988; Paus et al., 1993;
Petrides et al., 1993; Andreasen et al., 1995; Bookhei-
mer et al., 1995; Fox et al., 1996; Braun et al., 1997;
Murphy et al., 1997]. Of these, Fox et al. [1996] was
discarded because the subject sample partially over-
lapped the validation sample (below). Andreasen et al.
[1995] and Murphy et al. [1997] were discarded be-
cause they failed to differentiate between M1-mouth
and ventral pre-motor cortex (i.e., BA 6/44, or Broca’s
area), likely due to excessive smoothing. Five studies
were retained for the metanalysis. They ranged in
group-size (n) from 8 to 20 and totaled 71 subjects
(Table I). Using these input data and the FVM con-
struct [Fox et al., 1997], population (i.e., for single-
subject, nonaveraged images) location-probability pro-
files were computed for each cardinal axis (x, y, z) and
each cerebral hemisphere. These population profiles
were then scaled down to the group sizes predicted for
statistical parametric images (SPI), which averaged
images from 2, 5, or 10 individual subjects (here
termed SPI[2], SPI[5], SPI[10]).

TABLE I. M1-mouth input data*

Citation Task n

Left Right

X axis Y axis Z axis X axis Y axis Z axis

Petersen et al., 1988 speech 17 "42.8 "15.1 43.6 50.3 "9.9 38.3
Paus et al., 1993 speech 8 "51.0 "11.0 33.0 62.0 "4.0 22.0
Petrides et al., 1993 speech 10 "50.0 "11.0 38.0 44.0 "6.0 36.0
Bookheimer et al., 1995 speech 16 "45.0 "10.0 38.0 42.0 "4.0 44.0
Braun et al., 1997 speech 20 "48.0 "16.0 28.0 44.0 "16.0 28.0

Total 71

* M1-mouth location coordinates reported in five, group-mean, brain-activation studies contrasting
overt speech to a nonspeaking condition are shown. Values are reported by number of subjects (n),
cerebral hemisphere (left, right), and coordinate axis (x ! left-right; y ! anterior-posterior; z ! superior-
inferior).
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Validation data

Three cohorts of 10 subjects each participated in one
of three speech-motor protocols at the Research Imag-
ing Center (UTHSCSA). All three protocols acquired
three scans per condition, which allowed intrasubject
image averaging and per-subject response localization.
High-resolution, 3-D (1 mm3 voxels), T1-weighted
anatomical MRI was obtained in each subject, for
purposes of anatomical normalization. PET-MRI regis-
tration and spatial normalization were performed
using the Lancaster et al. [1995] algorithm, as imple-
mented in the SN" software software (Research Imag-
ing Center, UTHSCSA, San Antonio, Texas; ric.uthscsa.
edu/projects/). This algorithm employs a nine-
parameter, affine transformation to normalize images
relative to the atlas of Talairach and Tournoux [1988].

Statistical parametric images (SPIs) were created
using the Fox et al. [1988] algorithm, as implemented
in the MIPS" software (Research Imaging Center,
UTHSCSA, San Antonio, Texas; ric.uthscsa.edu/
projects/). This algorithm uses the pooled variance of
all brain voxels as the reference for computing signifi-
cance, rather than computing the variance at each
voxel. This procedure allows formation of single-
subject SPI, even without intrasubject averaging and is
more reliable for small samples than the voxel-wise
variance methods of Friston et al. [1991] and others
[Strother, 1997]. Fifty-four SPIs were created: 30 single-
subject SPIs (SPI[1]), 15 SPI[2], 6 SPI[5] and 3 SPI[10].
For each n (n ! 1, 2, 5, 10), data sets were mutually
exclusive. That is, sampling was without replacement.

The M1-mouth locations (left and right) were deter-
mined in each SPI, as follows. The 30-subject SPI was
scanned with a local-maximum search algorithm [Min-
tun et al., 1989], to determine the locations of the
M1-mouth areas (left and right) in the image with the
highest possible signal to noise (i.e., the 30-subject SPI).
In this 30-subject image, several functional regions
comprising the speech-motor system were readily
identified, including: the left and right M1-mouth
representations (BA4); supplementary motor area (me-
dial BA6); the left ventral premotor region (BA6/44);
and the left insula. The two M1-mouth locations were
used to limit the search domain within the 30, single-
subject SPIs. Potential left and right M1-mouth loci
were automatically detected as the most intense (high-
est positive z score) local maximum within a 3-cm
radius of the grand-average M1-mouth locus. The
large detection radius avoided artificially limiting the
variance observed among loci.

For the 30 SPI[1], the most intense response within
the search range was not appropriate in location for

M1-mouth in nineteen instances; 10 in the left hemi-
sphere; 9 in the right hemisphere. For example, the
supplementary motor area was captured by the search
algorithm in 1 case. Ventral premotor cortex (in hu-
mans, ‘‘Broca’s area’’) was captured by the search
algorithm in 14 cases. Superior temporal (in humans,
‘‘Wernicke’s area’’) was captured in two cases and
superior premotor was captured in two cases. When
the most intense response was inappropriately located,
the next most intense response was located appropri-
ately for M1-mouth in 11 instances (8 left; 3 right). In
eight instances (2 left; 6 right), no M1-mouth response
could be identified. In the 15 SPI[2], a M1-mouth responses
could not be identified in two instances: once on the left;
once on the right. In the six SPI[5], an M1-mouth response
could not be identified in the left hemisphere of one
image. In the SPI[10], left and right M1-mouth re-
sponses were identified in all three images.

Statistical analysis

M1-mouth response loci resulting from the above-
described imaging and image processing steps were
tested to determine: (1) whether image averaging was
well-behaved with respect to response means and
variances, (2) whether the spatial distributions of
image-averaged data differed significantly from Gauss-
ian, (3) whether the FVM for M1-mouth cortex cor-
rectly predicted the spatial distribution (mean and
population percentiles) of SPI[n].

Image averaging

The reduction of variance among M1-mouth response
loci achieved by image averaging was compared to that
achieved by coordinate averaging, using the same data
sets as input for both averaging procedures. The numeric
means of groups of 1, 2, 5, and 10 SPI[1] were compared to
the loci from SPI[1], SPI[2], SPI[5] and SPI[10]. Compari-
sons were graphical and statistical. A Hotelling’s T2 test
was used to test the null hypothesis that means achieved
by averaging images (SPI[1]) did not differ from those
achieved by averaging coordinates (SPI[n]).

Normality

Fox et al. (in review) demonstrated that M1-mouth
location-distribution profiles of individual-subject data
for each axis, in each hemisphere is normal and can be
pooled to generate a larger sample size. Thus to assess
the normality of the spatial distribution of response
locations within averaged images, responses for each n
were analyzed by pooling the data across axes (x, y, z)
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and hemisphere (left and right). A pooled histogram
for each n was created by normalization of each of the
six, individual-axis data sets to a zero-mean and unit
standard deviation histogram.

Fit of data to model

The hypothesis that FV models derived from the
group-mean SPI literature will predict the spatial
distributions of SPI[n] for any n was assessed graphi-
cally and by descriptive statistical parameters. Graphi-
cal assessment used the BrainMap# database and
user-interface tools, as follows. M1-mouth response
loci for each level of averaging (n ! 1, 2, 5, and 10)
were entered into the BrainMap# database. Corre-

sponding FVM for each level of averaging (n ! 1, 2, 5,
and 10) were created using the M1-mouth literature
(Table I). Response distributions, relative to the bounds
of the FVM, were visualized. As a descriptive statistic,
the percentage of responses lying within the 95th
confidence bound along each axis was determined for
each n.

RESULTS

Image-averaging

The effects of image averaging were assessed by
comparing response loci from 15 SPI[2], 6 SPI[5] and 3
SPI[10] with numerical averages of the same data sets

Figure 1.
Reduction in variance with image
averaging is shown. The decline
in variance, relative to per-sub-
ject (SPI[1]) variance, is shown as
a solid line. The decline in vari-
ance, relative to SPI[1] with
simple, numeric averaging of per-
subject coordinates, is shown as
a dotted line. The decline in vari-
ance, relative to SPI[1], achieved
by image averaging, is shown as a
dashed line.

TABLE II. Effects of image averaging on response locations*

n

Left Right

m X Y Z m X Y Z

1 28 "45 # 4.4 "10 # 6.2 38 # 5.0 24 50 # 3.6 "7 # 6.0 37 # 5.5
2 14 "45 # 2.7 "10 # 4.9 39 # 3.6 14 50 # 4.1 "8 # 4.0 36 # 5.4
5 5 "46 # 2.2 "10 # 2.2 40 # 1.4 6 50 # 2.5 "9 # 3.2 37 # 3.6

10 3 "45 # 1.2 "8 # 1.8 40 # 1.8 3 50 # 3.1 "9 # 0.7 37 # 2.7
30 1 "46 "8 40 1 52 "8 38

* M1-mouth location coordinates # one standard deviation for single-subject data (n ! 1) and for 3
group sizes (n ! 2, 5, 10) are shown. m is the number of images from which the mean and standard
deviation were computed.
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and with the inverse function (1/n). Means and vari-
ances were computed across groups. Location means
were not effected by image averaging or numeric
averaging (Table II; Fig. 1). In no instance did location
between nonaveraged (SPI[1]) and averaged data
(P $ 0.70; Hotteling’s T-test) differ. Mean location did
not statistically differ between numeric averaging and
image averaging (P $ 0.3 for n ! 2, 5, and 10).

Variability was reduced relative to SPI[1], as a function
of 1/n for both image averaging (SPI[n]) and for numeric
averaging, also as predicted (Table II, Fig. 1). Well-behaved
image averaging suggests that the spatial distribution
(across subjects) of M1-mouth is unimodal and that the
mean location is at or near the mode. Although these are
properties of a Gaussian distribution, well-behaved image
averaging is not per se a demonstration of normality.

Profile normality

The M1-mouth location-distribution profiles ob-
served for the different group sizes appeared normal
(i.e., Gaussian), within the limits of sample size (Fig. 2,
Table III). This observation was statistically tested by
computing the skew and kurtosis of the four profiles
(n ! 1, 2, 5, 10). All values were near zero, as expected
for a Gaussian distribution. None differed significantly
from zero (gamma-one and gamma-two statistics) [Zar,
1996]. The gamma and K2 D’Agostino-Pearson statistics
for the pooled distributions also were not significantly
different from Gaussian (P $ 0.5). These observations
support the FVM modeling assumption that location-
distribution profiles are normal. Whereas averaging
would be expected to increase the normality of the

Figure 2.
Pooled histograms of the spatial distributions of the image-averaged M1-mouth loci: (a) 30 SPI[1], b)
15 SPI[2], (b) 6 SPI[5], (c) 3 SPI[10]. Overall, the image averaged responses form spatial distributions
that are not significantly different from a Gaussian.
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data sets, the small sample sizes at larger group size
likely prevented this effect from being appreciated.

Validation of M1-mouth FVMs

Literature-derived FV models of the spatial distribu-
tion of M1-mouth loci were validated by comparisons
to the data sets just described, as follows. Spatial
probability distributions for SPI[1], SPI[2], SPI[5], and
SPI[10] were computed (from the literature-derived,
group-mean input data, above) and expressed as 95%
confidence limits (z ! 2.0) for each axis (x, y, z). The
fraction of subjects falling within these bounds was
generally high (Table IV). For the higher degrees of
averaging (e.g., SPI[10]), small sample sizes made the
computed fractions more variable. Nevertheless, there
appeared to be no systematic or progressive errors in
the spatial probability computations.

DISCUSSION

The analyses here presented confirmed the two
principal modeling assumptions and the predictive
power of functional volumes modeling [Fox et al.,
1997], as regards its application to group-mean data
sets. First, the mean location of the M1-mouth response

was not altered by averaging. Second, the variability of
response locations among sets of averaged images
declined with the number of individual-subject images
per average, as predicted. Third, spatial probability
contours computed using these two assumptions were
validated by comparison to data sets not utilized in
their creation.

The validations performed here were limited by the
relatively small number of images that were created
for each averaging level. For example, only three
10-subject images (SPI[10]) were created. This limita-
tion was due conjointly to the size of the validation
data set (30 individual subjects) and to the decision to
sample without replacement when creating the subject
groups for averaging. Despite this limitation, the data
provide strong support of the two assumptions of
well-behaved image averaging and of the predictive
power of FVM when applied to averaged images.

Theory and scope

Functional volumes modeling takes advantage of
the normality of the spatial distribution of functional
activations within a Cartesian space. Brain functional
areas are described as probability distributions about a
mean address, with no need to resort to gross anatomi-

TABLE III. Profile normality*

n

Left Right

m X %1; %2 Y %1; %2 Z %1; %2 m X %1; %2 Y %1; %2 Z %1; %2

1 28 "0.1; 0.3 0.3; "1.0 "0.5; "0.2 24 0.3; "0.2 0.2; "0.6 0.0; 1.4
2 14 0.2; "0.8 0.3; "0.5 0.9; 0.3 14 "0.8; 0.6 0.5; "0.4 "0.5; "0.5
5 5 "0.1; 1.8 1.7; 0.7 0.7; 1.0 6 "1.2; 0.3 1.7; 3.0 0.2; 2.0

* Profile normality is an assumption of FVM modeling. The normality of the spatial distributions of the
M1-mouth locations in each spatial axis (X, Y, Z) for single-subject data (n ! 1) and for 2° of averaging
(n ! 2, 5) are shown. Skew (%1 statistic) and kurtosis (%2 statistic) were near zero, the expected values
for a normal distribution, for all three axes in both hemispheres.

TABLE IV. Fit of FV models to validation data*

n

Left Right

X Y Z X Y Z

1 100% (28/28) 89% (25/28) 86% (24/28) 100% (24/24) 92% (22/24) 92% (22/24)
2 100% (14/14) 79% (11/14) 93% (13/14) 79% (11/14) 93% (13/14) 86% (12/14)
5 100% (5/5) 80% (4/5) 80% (4/5) 50% (3/6) 83% (5/6) 67% (4/6)

10 100% (3/3) 33% (1/3) 67% (2/3) 33% (1/3) 100% (3/3) 67% (2/3)

* Percentage of M1-mouth responses falling within the FVM-predicted bounds are shown for each
cardinal axis (X, Y, Z) in each cerebral hemisphere (right and left) for single-subject data (n ! 1) and for
4 degrees of averaging (n ! 2, 5, 10, 15).
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cal landmarks. In FVM, the estimate of per-subject
variance is derived from interstudy variance, correct-
ing for sample size and interlaboratory methodologi-
cal error. Thus group-mean studies can be used to
estimate per-subject variance. This requires, however,
that each area to be modeled be reported in a suffi-
ciently large number of independent studies to allow a
good estimate of variance. As shown in the present
study, it does not require that these studies be exact
duplications or even that they use the same activation
paradigm. It merely requires that whatever activation
paradigm is employed be sufficient to recruit the area
to be modeled. The corpus of group-mean studies
reporting function locations in standardized coordi-
nates is now quite large and is growing at a rate of
approximately one per day [Fox, 1997]. Thus a large

number of functional areas should be readily modeled
using the available data.

Utility

Several motivations for performing quantitative
metanalysis of functional areas can be identified. First
and foremost, metanalytic models serve as accurate,
concise, intuitive formulations of accumulated knowl-
edge, as is illustrated here. In addition, models can
serve as tools for automated image analysis, image
interpretation, and data retrieval. As an example of
image interpretation, a location-probability model (ei-
ther structural or functional) can be used to assign a
most-likely name and an likelihood value to a feature
within a brain image (e.g., an activated location).

Figure 3.
Goodness-of-fit of validation data to the metanalytically derived,
spatial probability contours for M1 mouth are illustration. A
illustrates 28 individual-subject response loci (SPI[1]). B illustrates
20 two-subject response loci (SPI[2]). C illustrates 8 five-subject
(SPI[5]]) response loci. D illustrates 3 ten-subject (SPI[10]) re-

sponse loci. In A–D, boxes illustrate 95% confidence bounds
appropriate to the number of subjects per image (n). Plotted in
BrainMap [Fox and Lancaster, 1996]. All values are in mm referable
to Talairach and Touroux [1988].
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Structure-location names and probabilities are already
being used for this purpose [Lancaster et al., 1997].
Functional spatial-probability contours could be used
in a similar manner. Functional location-probability
contours can be used as a regions-of-interest, to specify
locations within an activation image hypothesized to
be engaged by a task. By this strategy, analysis would
ask whether or not the hypothesized areas (defined by
FVM as location-probability boundaries) were acti-
vated under a specific set of conditions, thereby di-
rectly addressing the recurring criticism that voxel-
based image analyses are intrinsically hypothesis
generating rather than hypothesis testing [Ford, 1986;
Friston et al., 1991, Worsley et al., 1992]. This strategy
would also increase statistical power, by reducing the
analyzed volumes, thereby reducing the severity of the
correction for multiple comparisons [Friston et al.,
1997]. Precise description of location-probability distri-
butions for the normal-subject population provides a
powerful tool for identifying aberrant organizations,
such as are likely occur with developmental and
acquired brain lesions. Spatial probability models can
also be used to guide experimental or therapeutic
interventions. For example, Paus and colleagues [1997]
have used probabilistic estimates of mean location to
guide delivery of transcranial magnetic stimulation.
Finally, retrieval of studies activating a specific brain
location from a database, such as BrainMap# [Fox and
Lancaster, 1996], can be readily and powerfully per-
formed by means of location-probability bounds.
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