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After more than twenty years busily mapping the human brain, what have we learned from neuroimaging?
This review (coda) considers this question from the point of view of structure–function relationships and the
two cornerstones of functional neuroimaging; functional segregation and integration. Despite remarkable ad-
vances and insights into the brain's functional architecture, the earliest and simplest challenge in human
brain mapping remains unresolved: We do not have a principled way to map brain function onto its structure
in a way that speaks directly to cognitive neuroscience. Having said this, there are distinct clues about how
this might be done: First, there is a growing appreciation of the role of functional integration in the distrib-
uted nature of neuronal processing. Second, there is an emerging interest in data-driven cognitive ontologies,
i.e., that are internally consistent with functional anatomy. We will focus this review on the growing momen-
tum in the fields of functional connectivity and distributed brain responses and consider this in the light of
meta-analyses that use very large data sets to disclose large-scale structure–function mappings in the
human brain.
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Introduction

Over the past twenty years, neuroimaging has become the predom-
inant technique in behavioral and cognitive neuroscience. The volume
of papers and number of fields it pervades are unrivaled. Despite this,
it is curiously difficult to summarize its achievements in general
terms. The simplest attempts falls back on the two principles that
shaped brain mapping at its inception; namely functional segregation
and integration: Neuroimaging has established functional segregation
(the segregated or modular deployment of functional specialization
within brain regions) as a fundament of brain organization (Fig. 1).
However, the initial hope of associating eachbrain areawith a particular
function (Posner et al., 1998) has not been realized. While it is true that
notions like the ‘motion sensitive center’ and ‘fusiform face area’ are
part of common imaging parlance, the functionally informed labeling
of all but the smallest portion of cortex remains elusive. Indeed people
now prefer to talk about processing hierarchies, intrinsic networks
and defaultmodes that have no clear associationwith discrete cognitive
processing components. So can functional integration accommodate
functional labels in the context of distributed processing?

The premise we pursue in this review is that structure–function
mappings can be defined and will lead to new cognitive ontologies
that are grounded on the functional architectures that support them.
However, to access the mappings and ontologies may require us to dis-
assemble current views of cognition and use amore physiologically and
anatomically informed approach. Interestingly, many of the tools and
ideas required to establish distributed structure–function mappings
are exactly those tools and concepts (e.g. standard anatomical spaces)
that were essential in establishing brain mapping as the discipline we
know today. However, we may now be able to exploit them in a differ-
ent context, with new approaches to modeling distributed responses
and advances in data-mining and meta-analyses.

This review comprises two sections. In thefirst, we look at recent ad-
vances in the modeling of functional integration and network activity.
We will cover approaches to both endogenous activity and experimen-
tally evoked or induced responses. To illustrate the power of these ap-
proaches, this section focuses on processing hierarchies and the
necessary distinction between forward and backward connections as
revealed by neuroimaging. It concludes by considering recent advances
in network discovery in the setting of hierarchical brain architectures. In
the second section, we turn to the unmet challenge above; namely, how
do we elaborate cognitive ontologies that map properly to distributed
functional architectures in the brain. This section reviews the requisite
standardization tools and recent advances inmeta-analyses and related
multivariate approaches. We conclude with a synthesis of the two sec-
tions and consider the application of meta-analytic approach to net-
work discovery and structure–function mappings.

Modeling distributed neuronal systems

In this section, we address the different approaches to modeling
neuronal dynamics. Biophysical models of neuronal dynamics are
usually used for one of two things; either to understand the emergent
properties of neuronal systems or as observation models for mea-
sured neuronal responses. In other words, they are used to simulate
brain-like dynamics or are used explicitly to predict observed brain
activity. We discuss examples of both: in terms of emergent behav-
iors, we will consider dynamics on structure (Freeman, 1994;
Coombes and Doole, 1996; Robinson et al., 1997; Tsuda, 2001;
Freeman, 2005; Bressler and Tognoli, 2006; Kriener et al., 2008;
Rubinov et al., 2009; Buice and Cowan, 2009) and how this has
been applied to characterizing autonomous or endogenous fluctua-
tions in fMRI signals (e.g., Honey et al., 2007, 2009; Deco et al.,
2009). We then consider dynamic causal models that are used to ex-
plain responses elicited in designed experiments. This section con-
cludes with recent advances in causal modeling that means it can
be applied to the study of endogenous fluctuations, in terms of direct-
ed neuronal interactions. The first half of this section is based on
Friston and Dolan (2010), to which readers are referred for more
details.

Modeling autonomous dynamics

There has been a recent upsurge in studies of fMRI signal correla-
tions observed while the brain is at rest (Biswal et al., 1995). These
patterns seem to reflect anatomical connectivity (Greicius et al.,
2009) and can be characterized in terms of fluctuations of remarkably
reproducible spatial patterns or modes (i.e., intrinsic or resting-state
networks). One of these modes recapitulates the pattern of deactiva-
tions observed across a range of activation studies (the default mode;
Raichle et al., 2001). These studies highlight that, even at rest, endog-
enous brain activity is self-organizing and highly structured. There
are many questions about autonomous (self sustaining) dynamics
and the structures that support them. Some of the most interesting
come from computational anatomy and neuroscience. The emerging
picture is that endogenous fluctuations are a consequence of dynam-
ics on anatomical connectivity structures with particular scale-
invariant and small-world characteristics (Achard et al., 2006;
Honey et al., 2007; Bassett et al., 2006; Deco et al., 2009). In other
words, the pattern and strength of brain connections are sufficient
to propagate dynamics over large distances, but not dense or strong
enough to cause every brain area to synchronize vigorously. This
self organized criticality is a well-studied and universal characteristic
of complex systems and suggests that we may be able to understand
the brain in terms of universal phenomena: phenomena that do not
depend upon the biophysical details of the underlying system. For ex-
ample, Buice and Cowan (2009) model neocortical dynamics using
field-theoretic methods to describe both spontaneous neural fluctua-
tions and responses to stimuli. In their models, the density and extent
of lateral cortical interactions can be chosen to make the effects of
fluctuations negligible. However, as the generation and decay of neu-
ronal activity becomes more balanced, there is a transition into a re-
gime of critical fluctuations. These models suggest that the scaling
laws found in many measurements of neocortical activity, are consis-
tent with the existence of phase-transitions at a critical point. They
show how such properties lead to both random and rhythmic brain
activity (Buice and Cowan, 2009) and speak to larger questions
about how the brain maintains its dynamics near phase-transitions,
where the patterns of activity changed quantitatively from one sort
to another (i.e., self-organized criticality; Kitzbichler et al., 2009)
and the putative role of cortical gain control (Abbott et al., 1997).
This is an important issue, because self-organization near phase-
transitions shows universal patterns and structures, as studied in syn-
ergetics (e.g., Jirsa et al., 1994; Jirsa and Haken, 1996; Jirsa and Kelso,
2000; Tognoli and Kelso, 2009; Tschacher and Haken, 2007). Al-
though there have been recent papers arguing for criticality and
power law effects in large-scale cortical activity (e.g. Kitzbichler et
al., 2009; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004;
Freyer et al., 2009), there is also work that argues otherwise; at
least at higher frequencies (e.g. Bedard et al., 2006; Miller et al.,
2007; Touboul and Destexhe, 2009). The important distinction ap-
pears to be that ‘slow’ fluctuations may contain critical oscillations,
whereas high-frequency coherent oscillations may reflect other dy-
namical processes. In summary, endogenous fluctuations may be
one way in which anatomy speaks to us through dynamics. They
also suggest important questions about how fluctuations shape
evoked responses (e.g., Hesselmann et al., 2008).

Dynamical approaches to understanding phenomena in neuroim-
aging data focus on emergent behaviors and the constraints under
which brain-like behavior manifest (e.g., Breakspear and Stam,
2005; Alstott et al., 2009). In the remainder of this section, we turn
to models that try to explain observed neuronal activity directly.



Fig. 1. Publication rates pertaining to functional segregation and integration. Publications per year searching for Activation or Connectivity and functional imaging. This reflects the
proportion of studies looking at functional segregation (Activation) and those looking at integration (Connectivity).
Source: PubMed.gov. U.S. National Library of Medicine.
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This is a relatively new field that rests on model fitting or inversion.
Model inversion is important: to date, most efforts in computational
neuroscience have focused on models of neuronal dynamics (that de-
fine a mapping from causes to neuronal dynamics). The inversion of
these models (the mapping from neuronal dynamics to their causes)
now allows one to test different models against empirical data. Put
simply, this means one can compare different models or hypotheses
about the generation of neuronal activity by evaluating the evidence
for different models, where the evidence is just the probability of
some neuroimaging data, under the model. This is known as model
comparison or selection, which we will illustrate in the context of dy-
namic causal modeling.

Dynamic causal modeling

Dynamic causal modeling (DCM) refers to the (Bayesian) inversion
and comparison of dynamic models that cause observed data. These
models are formulated in continuous time (or frequency) and describe
howunderlying neuronal and physiological states evolve, in response to
experimental inputs or endogenousfluctuations. Usually, but not neces-
sarily, these formulations are in terms of differential equations that de-
scribe the motion or flow of hidden neurophysiologic states, while an
observer function maps from hidden states to observed brain signals.
This mapping is probabilistic and involves some observation noise.
Noise at the level of the hidden states can model endogenous fluctua-
tions in neural activity of the sort considered above (Friston et al.,
2008); we will return to this later.

Differential equations are essential when modeling the dynamics of
biological systems. The basic idea behind DCM is to formulate one or
moremodels of how data are caused in terms of a network of distribut-
ed sources. These sources talk to each other through parameterized
connections and influence the dynamics of hidden states that are intrin-
sic to each source. Model inversion provides probabilistic estimates of
the model parameters; namely extrinsic connection strengths and in-
trinsic (synaptic) parameters. These estimates can then be used to eval-
uate the probability of the data given themodel per se. This is themodel
evidence and is the key quantity that is used for model comparison. In
one sense, this approach just formalizes the scientific process based
on the evidence for different hypotheses.

DCM was originally introduced for fMRI using a simple model
based upon a bilinear approximation to the underlying equations of
motion that couple neuronal states in different brain regions
(Friston et al., 2003). Crucially, DCMs are generalizations of the con-
ventional convolution model used to analyze fMRI data and event-
related potential (ERP) analyses in electrophysiological research.
The only difference is that one allows for hidden neuronal states in
one part of the brain to be influenced by neuronal states elsewhere.
In this sense, they are biophysically informed multivariate analyses
of distributed brain responses.

Most DCMs consider point sources both for fMRI and EEG data
(c.f., equivalent current dipoles) and are formally equivalent to
graphical models, which are used as generative or causal models
of observed responses. Inference on the coupling within and be-
tween the nodes (brain regions) of these graphs or networks is
generally based on perturbing the system experimentally and try-
ing to explain the observed responses by optimizing the model
parameters (e.g., connection strengths). This optimization fur-
nishes posterior or conditional probability distributions over the
unknown parameters (e.g., effective connectivity) and the evi-
dence for the model. The evidence is tremendously important be-
cause it enables model comparison (Penny et al., 2004). The power
of Bayesianmodel comparison, in the context of dynamic causalmodel-
ing, has become increasing apparent. This now represents one of the
most important applications of DCM and allows different hypotheses
to be tested, where each DCM corresponds to a specific hypothesis
about functional brain architectures (e.g., Acs and Greenlee, 2008;
Allen et al., 2008; Grol et al., 2007; Heim et al., 2009; Smith et al.,
2006; Stephan et al., 2007; Summerfield and Koechlin, 2008). Although
DCM is probably best known through its application to fMRI, more re-
cent applications have focused on neurobiologically plausible models
of electrophysiological dynamics. Furthermore, different data features
(e.g., ERPs or induced responses) can be modeled with the same DCM.
Figs. 2 to 4 illustrate some key developments in DCM, which are
reviewed briefly below.

These examples are chosen to illustrate how much information
is latent in neuroimaging data and how it can be accessed by
using increasingly detailed and biologically realistic models. One
obvious question here is how detailed can these models be? The
answer to this question is pragmatic: when models become too
complex, there evidence actually starts to decrease (c.f., Occam's
razor). Crucially, the difference between the evidence for two
overly complicated or detailed models disappears. This enables
one to conclude that, for the data in hand, there is no evidence
for one model over another. In other words, Bayesian model com-
parison allows one to find the right level of biophysical detail that
is supported by the data available. Data from fMRI has exquisite
spatial resolution but cannot differentiate between detailed
models of temporal dynamics that are formulated in terms of real-
istic populations and synaptic processes. Conversely, electromag-
netic data, although lacking precise spatial information can
support very detailed physiological models, provided we know
where in space the signals were generated. The biological



Fig. 2. Dynamical causal modeling of electromagnetic responses. Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs)
and potentials (ERPs) are generated. DCMs for event-related responses measured with EEG or MEG use biologically informed models to make inferences about the underlying neu-
ronal networks generating responses. The approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which the parameters of the reconstruc-
tion have an explicit neuronal interpretation. Specifically, these parameters encode, among other things, the coupling among sources and how that coupling depends upon stimulus
attributes or experimental context. The basic idea is to supplement conventional electromagnetic forward models, of how sources are expressed in measurement space, with a
model of how source activity is generated by neuronal dynamics. A single inversion of this extended forward model enables inference about both the spatial deployment of sources
and the underlying neuronal architecture generating them. Left panel: This schematic shows a few sources that are coupled with extrinsic connections. Each source is modeled with
three subpopulations (pyramidal, spiny-stellate and inhibitory interneurons). These have been assigned to granular and agranular cortical layers, which receive forward and back-
ward connections respectively. Right panel: Source model with a layered architecture comprising three neuronal subpopulations, each with three states; voltage and (excitatory and
inhibitory) conductances for each subpopulation. These neuronal state-equations are based on a Morris–Lecar (Morris and Lecar, 1981) model and include random fluctuations on
the neuronal states (see Marreiros et al., 2009). The effects of these fluctuations can be modeled in terms of the dynamics of the ensuing probability distribution over the states of a
population; this is known as a mean-field model. These models can be contrasted with neural-mass models that only consider the expected (mean) state of the population.
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plausibility of current models is illustrated by the neural mass
models used in DCM for electromagnetic signals.

Neural-mass models

Most recent developments in modeling have focused on electro-
magnetic (EEG and MEG) data (David et al., 2006; Kiebel et al.,
2006, 2007; Garrido et al., 2007a,b; Clearwater et al., 2008; Chen et
al., 2008; Garrido et al., 2008), with related developments to cover
local field potential (LFP) recordings (Moran et al., 2007, 2008).
These models are more sophisticated than the neuronal models for
fMRI and are based upon neural-mass or mean-field models of inter-
acting neuronal populations (see Deco et al., 2008). These models
summarize the dynamics of neuronal populations in terms of their
mean activity, which greatly simplifies the models by providing an
abstraction that retains the basic behaviors but dispenses with the
detailed dynamics of individual neurons. Typically, each source of
electromagnetic activity is modeled as an equivalent current dipole
(or ensemble of small cortical patches); whose activity reflects the
depolarization of three populations (usually one inhibitory and two
excitatory). Crucially, one can embed any neural-mass model into
DCM. These can include models based upon second-order linear dif-
ferential equations (c.f., Lopes da Silva et al., 1974; Jansen and Rit,
1995) or conductance-based models based on nonlinear differential
equations (c.f., Morris and Lecar, 1981). This is useful, because there
is an established literature and understanding about the behavior of
these various neural mass models of neuronal dynamics.

As with DCM for fMRI, DCM for electromagnetic responses is just a
generalization of conventional (equivalent current dipole) models
that have been equipped with parameterized connections among

image of Fig.�2


Fig. 3. Forward and backward connections (a DCM study of evoked responses). Electrophysiological responses to stimuli unfold over several hundred milliseconds. Early or exog-
enous components are thought to reflect a perturbation of neuronal dynamics by (bottom-up) sensory inputs. Conversely, later endogenous components have been ascribed to
(top-down) recurrent dynamics among hierarchical cortical levels. This example shows that late components of event-related responses are indeed mediated by backward connec-
tions. The evidence is furnished by dynamic causal modeling of auditory responses, elicited in an oddball paradigm using electroencephalography (EEG). Here, we consider the ev-
idence for models with and without backward connections in data gathered over increasing windows of peristimulus time. Left panel (Model specification and data): The upper
graph shows the ERP responses to a deviant tone, from 0 to 400 ms peristimulus time (averaged over subjects). Sources comprising the DCM were connected with backward
(gray) and/or forward (dark gray) connections as shown below. A1: primary auditory cortex, STG: superior temporal gyrus, IFG: inferior temporal gyrus. Two different models
were tested, with and without backward connections (FB and F respectively). Sources (estimated posterior moments and locations of equivalent dipoles) are superimposed on
an MRI of a standard brain in MNI space (upper left). Right panel (Bayesian model selection): The upper graph shows the differences in log-evidence when comparing the
model with backward connections (FB) against the model without (F). It shows that the evidence for the model with backward connections is substantially greater when, and
only when, we consider the evidence in data late in peristimulus time (after about 220 ms). The lower graphs show predicted (solid) and observed (broken) responses (of the prin-
cipal spatial mode in channel space). The improved fit afforded by backward connections is evident. This sort of result links a generic feature of brain responses to recurrent dy-
namics; which are a cornerstone of most modern theories of perceptual inference and learning. See Garrido et al. (2007b) for further details.
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and within sources (David et al., 2006). These models fall into the
class of spatiotemporal dipole models (Scherg and Von Cramon,
1985) and enable entire time-series over peristimulus time to be
modeled. Face validation of these models has used known electro-
physiological phenomena and independent measures of coupling
(e.g. David and Friston, 2003; David et al., 2004). Their predictive va-
lidity has been established using, for example, the mismatch negativ-
ity (Näätänen, 2003) as an exemplar sensory learning paradigm (e.g.,
Garrido et al., 2007a, 2008).

Developments in this area have been rapid and can be summa-
rized along two lines. First, people have explored more realistic
neural-mass models based upon nonlinear differential equations,
whose states correspond to voltages and conductances (c.f.,
Morris and Lecar, 1981). See Fig. 2. This allows one to formulate
DCMs in terms of well-characterized synaptic dynamics and
model different types of receptor-mediated currents explicitly.
Furthermore, conventional neural-mass modeling (which con-
siders only the average state of a neuronal ensemble) has been
extended to cover ensemble dynamics in terms of probability dis-
tributions over the hidden states of neuronal populations. This in-
volves modeling not just the average activity but also its
dispersion and covariance among different neuronal populations
(Marreiros et al., 2009). The second line of development concerns
the particular data features the models try to explain. In conven-
tional DCMs for ERPs, the time-course of voltage at the sensors
is modeled explicitly. However, DCMs for spectral responses
(Moran et al., 2007, 2008) can be applied to continuous record-
ings of arbitrary length. This modeling initiative rests on a linear
systems analysis of the underlying neural-mass model to give a
predicted spectral response for unknown but parameterized en-
dogenous input. In other words, one can make the simplifying as-
sumption that observed fluctuations in electromagnetic signals are
caused by small endogenous perturbations to the system's average
state. This means that, given the spectral or frequency profile of
electrophysiological recordings, one can estimate the coupling
among different sources and the spectral energy of neuronal and
observation noise generating observed spectra. This has proved
particularly useful for LFP recordings and has been validated
using animal models and psychopharmacological constructs
(Moran et al., 2007, 2008). Indeed, this could be a potentially im-
portant tool in studies of receptor function and related learning
paradigms. Finally, there are DCMs for induced responses (Chen
et al., 2008). Like the steady-state models, these predict the spec-
tral power of responses but as a function of peristimulus time. The
underlying neural model here is based upon the simple bilinear
approximation to any neuronal dynamics. The key benefit of

image of Fig.�3


Fig. 4. Forward and backward connections (a DCM study of induced responses). This example provides evidence for functional asymmetries between forward and backward con-
nections that define hierarchical architectures in the brain. It exploits the fact that modulatory or nonlinear influences of one neuronal system on another (i.e., effective connectiv-
ity) entail coupling between different frequencies. Functional asymmetry is addressed here by comparing dynamic causal models of MEG responses induced by visual processing of
faces. Bayesian model comparison indicated that the best model had nonlinear forward and backward connections. Under this model, there is a striking asymmetry between these
connections; in which high (gamma) frequencies in lower cortical areas excite low (alpha) frequencies in higher areas, while the reciprocal effect is suppressive. Left panel: (Above):
Log-evidence (pooled over subjects) for four DCMs with different combinations of linear and nonlinear (N vs. L) coupling in forward and backward (F vs. B) connections. It can be
seen that the best model is FNBN, with nonlinear coupling in both forward and backward connections. (Below): Location of the four sources (in MNI coordinates) and basic
connectivity structure of the models. LV and RV; left and right occipital face area; LF and RF; left and right fusiform face area. Right panel: (Above): SPM of the t-statistic
(p>0.05 uncorrected) testing for a greater suppressive effect of backward connections, relative to forward connections (over subjects and hemisphere). (Below): Subject and
hemisphere-specific estimates of the coupling strengths at the maximum of the SPM (red arrow). See Chen et al. (2009) for further details.
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these DCMs is that one can quantify the evidence for between-
frequency coupling among sources, relative to homologous models
restricted to within-frequency coupling. Coupling between fre-
quencies corresponds to nonlinear coupling. Being able to detect
nonlinear coupling is important because it speaks to nonlinear or
modulatory synaptic mechanisms that might differentiate be-
tween forward and backward connections.

Forward and backward connections in the brain

To provide a concrete example of howDCM has been used to build a
picture of distributedprocessing in the brain,we focus on the role of for-
ward and backward message-passing among hierarchically deployed
cortical areas (Felleman and Van Essen, 1991). Many current formula-
tions of perceptual inference and learning can be cast in terms of mini-
mizing prediction error (e.g., predictive coding; Ballard et al., 1983;
Mumford, 1992; Dayan et al., 1995; Rao and Ballard, 1998; Murray et
al., 2002) or, more generally, surprise (Friston et al., 2006). The predic-
tive coding hypothesis suggests that prediction errors are passed for-
ward from lower levels of sensory hierarchies to higher levels, to
optimize representations in the brain's internal model of its world. Pre-
dictions based upon these representations are then passed down back-
ward connections to suppress or explain away prediction errors. This
message-passing scheme rests upon reciprocal or recurrent self orga-
nized dynamics that necessarily involve forward and backward
connections. There are some key predictions that arise from this
scheme. First, top-down influences mediated by backward connections
should have a tangible influence on evoked responses that aremodulat-
ed by prior expectations induced by priming and attention. Second, the
excitatory influences of forward (glutamatergic) connections must be
balanced by the (polysynaptic) inhibitory influence of backward con-
nections; this completes the feedback loop suppressing prediction
error. Third, the backward connections should involve nonlinear or
modulatory effects; because it is these, and only these, that model non-
linearities in the world that generate sensory input.

These functionally grounded attributes of forward and backward
connections, and their asymmetries, are exactly the sort of things
that current modeling of neuroimaging data can now test. A fairly
comprehensive picture is now emerging from DCM studies using sev-
eral modalities and paradigms: Initial studies focused on attentional
modulation in visual processing. These studies confirmed that the at-
tentional modulation of visually evoked responses throughout the vi-
sual hierarchy could be accounted for by changes in the strength of
connections mediated by attentional set (see Friston et al., 2003). In
other words, no extra input was required to explain attention-
related responses; these were explained by recurrent dynamics
among reciprocally connected areas, whose influence on each other
increased during attentive states.

More recently the temporal anatomy of forward and backward in-
fluences has been addressed using DCM for event related potentials
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ERPs. Garrido et al. (2007b) used model comparison to show that the
evidence for backward connections was more pronounced in later
components of the ERP. Put another way, backward connections are
necessary to explain late or endogenous response components in
simple auditory ERPs. See Fig. 3. These results fit comfortably with
the dynamics of reciprocally connected neuronal populations,
whose time-constants are much greater than any single neuronal
unit within each population. Garrido et al. (2008) then went on to
ask whether one could understand repetition suppression in terms
of changes in forward and backward connection strengths that are
entailed by predictive coding. DCM showed that repetition suppres-
sion, of the sort that might explain the mismatch negativity
(Näätänen, 2003), could be explained purely in terms of a change in
forward and backward connections with repeated exposure to a par-
ticular stimulus. Furthermore, by using functional forms for the
repetition-dependent changes in coupling strength, Garrido et al.
(2009) showed that changes in extrinsic (cortico-cortical) coupling
were formally distinct from intrinsic (within area) coupling. This
was consistent with theoretical predictions about changes in post-
synaptic gain and distinct changes in synaptic efficacy associated
with learning under predictive coding. Finally, Chen et al. (2009)
addressed functional asymmetries in forward and backward connec-
tions during face perception, using DCM for induced responses.
These asymmetries were expressed in terms of nonlinear or cross-
frequency coupling; where high frequencies in a lower area excited
low frequencies in a higher area, whereas the reciprocal influences
where inhibitory. See Fig. 4. These results may be related to the differ-
ential expression of gamma activity in superficial and deep pyramidal
cells that are the origin of forward and backward connections respec-
tively (see Chrobak and Buzsaki, 1998; Roopun et al., 2008; Fries,
2009; Wang, 2010). The emerging story here is that forward connec-
tions may employ predominantly fast (gamma) frequencies, while
backward influences may be meditated by slower (beta) activity.

Recent electrophysiological evidence suggests that the top-down
signals may be expressed predominantly in the beta frequency range.
Conversely, the bottom up signals reporting prediction error may be
expressed at higher (gamma) frequencies (see Wang, 2010 for a com-
prehensive review). This is asymmetry is exactly consistent with theo-
retical treatments of evidence accumulation in predictive coding;
where “Principal cells elaborating predictions (e.g., deep pyramidal
cells) may show distinct (low-pass) dynamics, relative to those encod-
ing error (e.g., superficial pyramidal cells)” (Friston, 2008). The same
theme emerges in adaptive resonance treatments of attentive learning
by laminar thalamocortical circuits: prediction errors “cause gammaos-
cillations that support attention, resonance, learning, and… beta oscil-
lations during reset and hypothesis testing operations that are initiated
in the deeper cortical layers” (Grossberg and Versace, 2008). An empir-
ical example here is the work of Zhang et al. (2008), who showed that
prestimulus cortical activity is correlated with the speed (reaction
time: RT) of visuomotor processing. These authors recorded local field
potentials from macaque monkeys trained to perform a visuomotor
pattern discrimination task. “In the prefrontal cortex, prestimulus
power in the beta range (14–30 Hz) was negatively correlated with
RT in twomonkeys, suggesting a possible role of activity in this frequen-
cy range in the mediation of top-down control of visuomotor proces-
sing” (Zhang et al., 2008).

The implicit spectral asymmetry in forward and backward connec-
tions is a nice example of how far we have come in terms of charac-
terizing structure–function relationships and the sorts of questions
currently being addressed. In principle, the application of modern
causal modeling techniques to characterize distributed electromag-
netic responses is now in a position to address very detailed and spe-
cific hypotheses about the dynamics and structural architectures that
underlie neuronal computations.

In conclusion, we have come some way, in terms of understanding
the functional anatomy of forward and backward connections in the
brain. Interestingly, some of the more compelling insights have
been obtained by using biophysical models with simple paradigms
(like the mismatch negativity) and simple non-invasive techniques
(like EEG). All the examples so far have used evoked or induced re-
sponses to make inferences about distributed processing. Can we
apply the same modeling principles to autonomous or endogenous
activity and still find evidence for structured hierarchical processing?

Network discovery

Dynamic causal modeling is usually portrayed as a hypothesis-
led approach to understanding distributed neuronal architectures
underlying observed brain responses (Friston et al., 2003). General-
ly, competing hypotheses are framed in terms of different networks
or graphs, and model selection is used to quantify the evidence for
one network (hypothesis) over another (Penny et al., 2004). How-
ever, in recent years, the number of models people consider has
grown enormously; to the extent that DCM is now used to compare
very large numbers of models (e.g., Stephan et al., 2008; Penny et al.,
2004). Using DCMs based on stochastic differential equations, it is
now possible to take this discovery theme one step further and
throw away prior knowledge about the experimental causes of ob-
served responses to make DCM entirely data-led. This enables net-
work discovery using observed responses during both activation
studies and (task-free) studies of autonomous or endogenous
activity.

This form of network discovery uses model selection to identify the
sparse network connections that best explains observed time-series
(Friston et al., 2011). The connectivity specifies the form of the network
(e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree
distribution). Crucially, this form of network discovery can be applied
to experimentally evoked responses (activation studies) or endoge-
nous activity in task-free (resting state) fMRI studies. Unlikemany con-
ventional approaches to network discovery, DCM permits the analysis
of directed and cyclic graphs. In other words, one can compare models
with directed connections of a biologically plausible sort that can be re-
current or reciprocal. This modeling application furnishes a network
description of distributed activity in the brain that is optimal in the
sense of having the greatest evidence, relative to other networks.

To illustrate this approach, Fig. 5 shows an example of network
discovery following a search over all combinations of connections
among six nodes or regions. This example used DCM for fMRI and
an attention to motion paradigm (see Friston et al., 2011 for details).
Six representative regions were defined as clusters of contiguous vox-
els surviving an (omnibus) F-test for all effects of interest at pb0.001
(uncorrected) in a conventional SPM analysis. These regions were
chosen to cover a distributed network (of largely association cortex)
in the right hemisphere, from visual cortex to frontal eye fields. The
activity of each region (node) was summarized with its principal
eigenvariate to ensure an optimum weighting of contributions for
each voxel with the ROI. Fig. 5 summarizes the results of post hoc
model selection. The upper left panel shows the log of the evidence
for the 32,768 models considered (reflecting all possible combina-
tions of bidirectional edges among the six nodes analyzed). In this ex-
ample, there is a reasonably clear optimum model. This is evident if
we plot the probability of each model, given the data (assuming all
models were equally likely a priori), as shown on the upper right. In
this case, we can be over 80% certain that one network generated
the observed fMRI data. Usually, one finds that subsets of models
are, collectively, better than other subsets, where a subset can be de-
fined by the presence or absence of a particular connection or
attribute.

The parameter estimates of the connections under the model with
full connectivity (left) and the selected model (right) are shown in
the lower panels. One can see that three connections have been
‘switched off’. This is a surprisingly dense network, in which all but



Fig. 5. Model selection and network discovery. This figure summarizes the results of model selection using fMRI data. The upper left panel shows the log-evidence profile over all
models considered (encoding different combinations of edges among the six nodes). The implicit model posterior (assuming flat priors over models), is shown on the upper right
and suggests that we can be over 80% certain that a particular architecture generated these data. The parameter estimates of the connections under a model with full connectivity
(left) and selected model (right) are shown in the lower panels. We can see that certain connections have been switched off as the parameter estimates are reduced to their prior
value of zero. It is these anti-edges that define the architecture we are seeking. This architecture is shown graphically in the next figure.
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three of the fifteen reciprocal connections appear to be necessary to
explain observed responses. This dense connectivity may reflect the
fact that we deliberately chose regions that play an integrative (asso-
ciational) role in cortical processing (c.f., hubs in graph theory; Bullmore
and Sporns, 2009).

Fig. 6 shows the underlying graph in anatomical and functional
(spectral embedding) space. Note that these plots refer to undirected
graphs (we will look at directed connections strengths below). The
upper panel shows the six regions connected using the conditional
means of the coupling parameters (in Fig. 5), under the selected (op-
timal) model. The color of the arrows reports the source of the stron-
gest bidirectional connection, while its width represents its absolute
(positive or negative) strength. This provides a description of the ar-
chitecture in anatomical space. A more functionally intuitive depic-
tion of this graph is provided in the lower panel. Here, we have
used spectral embedding to place the nodes in a functional space,
where the distance between them reflects the strength of bidirection-
al coupling. But what do these graphical representations tell us about
putative hierarchical structure?

Asymmetric connections and hierarchies

Network analyses using functional connectivity (correlations
among observed neuronal time series) or diffusion weighted MRI
data cannot ask whether a connection is larger in one direction
relative to another, because they are restricted to the analysis of
undirected (simple) graphs. However, here we have the unique
opportunity to exploit asymmetries in reciprocal connections and
revisit questions about hierarchical organization (e.g., Capalbo et
al., 2009; Hilgetal et al., 2000; Lee and Mumford, 2003; Reid et
al., 2009). There are many interesting analyses that one could con-
sider, given a weighted (and signed) connectivity matrix. Here, we
will illustrate a simple analysis of functional asymmetries: There
are several strands of empirical and theoretical evidence to sug-
gest that, in comparison to bottom-up influences, the net effects
of top-down connections on their targets are inhibitory (e.g., by
recruitment of local lateral connections; cf., Angelucci and
Bullier, 2003; Crick and Koch, 1998). Theoretically, this is consis-
tent with predictive coding, where top-down predictions suppress
prediction errors in lower levels of a hierarchy (see above). One
might therefore ask which hierarchical ordering of the nodes max-
imizes the average strength of forward connections relative to
their backward homologue. This can be addressed by finding the
order of nodes that maximizes the difference between the average
forward and backward conditional estimates of effective connec-
tivity: The resulting order was vis, sts, pfc, ppc, ag, and fef, (see
Fig. 6), which is not dissimilar to the vertical deployment of the
nodes in functional embedding space (Fig. 6; lower panel). The
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middle panel shows the asymmetry indices for each connection,
based on the estimates of the selected model. This is a pleasing
result because it places the visual cortex at the bottom of the hi-
erarchy and the frontal eye fields at the top, which we would ex-
pect from the functional anatomy of these regions. Note that there
was no bias in the model or its specification toward this result.
Furthermore, we did not use any of the experimental factors in specify-
ing the model and yet the data tell us that a plausible hierarchy is the
best explanation for observed fluctuations in brain activity (Müller-
Linow et al., 2008).
Summary

In summary, current modeling initiatives in neuroimaging call on
biophysical models of neuronal dynamics by treating them as forward
or generative models for empirical time-series. The ensuing infer-
ences pertain to the models per se and their parameters (e.g., effective
connectivity) that generate observed responses. Using model com-
parison, one can search over wide model-spaces to find optimal archi-
tectures or networks. Having selected the best model (or subset of
models), one then has access to the posterior density on the neuronal
and coupling parameters defining the network. Of key interest here are
changes in coupling that are induced experimentally with, for example,
drugs, attentional set or time. These experimentally induced changes en-
able one to characterize the context-sensitive reconfiguration of brain
networks and test hypotheses about the relative influence of top-down
and bottom-up signals. Recent advances in models based on stochastic
differential equations cannowaccommodate hiddenfluctuations in neu-
ronal states that enable the modeling of autonomous or endogenous
brain dynamics. Coupled with advances in post hoc model selection, we
can now search over vast model-spaces to discover the most likely net-
works generating both evoked and spontaneous activity.

The examples in this section have been chosen to illustrate how
models of neuronal dynamics can be used to exploit neuroimaging
data that, on the surface, may have an apparently limited spatial tem-
poral resolution. However, by using biologically plausible explana-
tions for these data we can link processes at the synaptic scale to
the globally distributed network responses we measure. The central
role of models is not remarkable, in that it speaks to the crucial role
of hypotheses or theories about functional brain architectures. Having
considered the basic structures or architectures that are latent in neu-
roimaging data, we now turn to the functional attribution of these
structures in terms of cognitive ontologies and task-analyses.

Meta-analytic approaches to neural system modeling

In this section, we discuss the rapidly evolving use of coordinate-
based meta-analysis of functional and structural neuroimaging data
to create graphical models of human neural systems. These models
provide data-driven hypotheses to guide experimental designs and
inform statistical modeling (e.g., by providing priors for DCM and
other forms of graphical analysis). The neuroimaging community
enjoys the enviable status of having developed analytic and reporting
standards that not only provide excellent per-study sensitivity, but
also enable a growing repertoire of spatial meta-analytic methods.
Spatial normalization is the most fundamental analytic and reporting
standard that enables spatial meta-analysis: Spatial normalization
transforms a brain image from ‘native space’ into a standardized
Fig. 6. The selected graph (network) in anatomical space and functional space. This
figure shows the graph selected (on the basis of the posterior probabilities in the pre-
vious figure) in anatomical space and functional (spectral embedding) space. The
upper panel shows the six regions connected using the conditional means of the cou-
pling parameters, under the model selected (see Fig. 5). The color of the arrow reports
the source of the strongest bidirectional connection, while its width represents its ab-
solute (positive or negative) strength. This provides a description of the architecture or
graph in anatomical space. A more functionally intuitive depiction of this graph is pro-
vided in the lower panel. Here, we have used spectral embedding to place the nodes in
a functional space, where the distance between them reflects the strength of bidirec-
tional coupling. Spectral embedding uses the eigenvectors vectors (principle compo-
nents) of the weighted graph Laplacian to define a small number of dimensions that
best capture the proximity or conditional dependence between nodes. Here, we have
used the first three eigenvectors to define this functional space. The weighted adjacen-
cy matrix was, in this case, simply the maximum (absolute) conditional estimate of the
coupling parameters. The middle panel shows the asymmetry strengths based on the
conditional estimates of the selected model. This provides a further way of characterizing
the functional architecture in hierarchical terms, based on (bidirectional) coupling. vis —
visual cortex; sts— superior temporal sulcus; pfc— prefrontal cortex; ppc— posterior pa-
rietal cortex; ag — angular gyrus; fef — frontal eye fields.

image of Fig.�6


416 P.T. Fox, K.J. Friston / NeuroImage 61 (2012) 407–426
space defined by a reference brain (Fox, 1995a,b), where locations are
addressed by x–y–z coordinates. The original motivation for introduc-
ing spatial normalization (Fox et al., 1985) was to allow the locations
of task-induced functional activations to be reported in a “precise and
unambiguous” manner, thereby “facilitating direct comparison of
experimental results from different laboratories”; i.e., in anticipa-
tion of coordinate-based meta-analysis. The power of this stan-
dard has been reinforced by the widespread adoption of voxel-
wise analyses (rather than region-of-interest analysis) and the
acquisition of imaging data sets that span the entire brain (or
nearly so). Both of these advances reduce the bias inherent in spa-
tially selective (region-of-interest) reporting. Collectively, these
standards are enabling an evolving family of coordinate-based
meta-analysis (CBMA) methods, several of which exhibit the abil-
ity to extract “emergent properties”, i.e., to discover classes of ob-
servations not reported in the source publications (Laird et al.,
2009a).

Coordinate-based meta-analysis: Early efforts

Meta-analysis is most generally defined as the post hoc combina-
tion of results from independent studies. The original use of meta-
analysis was to combine non-significant effects to reveal effects that
were collectively significant (e.g., to determine which adverse events
are rare but real drug side effects and which are random events). This
application uses the implicit large sample sizes to increase statistical
power (Pearson, 1904). In the neuroimaging community, however,
the primary use of meta-analysis has been to synthesize the pub-
lished literature for the purpose of generating constraints on the in-
terpretation, design and analysis of subsequent studies (Fox et al.,
1998). In the first neuroimaging meta-analysis, coordinates from ex-
tant reports were tabulated and plotted to constrain interpretation
of a primary (non-meta-analytic) study (Frith et al., 1991). Shortly
thereafter, “stand-alone” neuroimaging meta-analyses began to
appear (Tulving et al., 1994; Fox, 1995a,b; Picard and Strick, 1996),
serving as quantitative reviews and hypothesis generation. Although
the first neuroimaging meta-analyses were statistically informal,
this soon changed. The shift to quantitative CBMA perhaps began
with Paus (1996), who computed and interpreted means and stan-
dard deviations of the x–y–z addresses in a review of studies of the
frontal eye fields. Fox and colleagues extended this initiative by cor-
recting raw estimates of spatial location and variance for sample
size, to create scalable models of location probabilities (functional
volumes models or FVM) and suggesting uses of such models for
data analysis (Fox et al., 1997, 1999, 2001). To support systematic de-
velopment of CBMA methods, Fox, Lancaster and colleagues devel-
oped the BrainMap database as an open-access repository of
functional neuroimaging studies, providing both study results (acti-
vation locations) and coded experimental meta-data that necessarily
entailed an evolving cognitive ontology (Fox and Lancaster, 2002;
Laird et al., 2005b,c; Fox et al., 2005a,b).

Activation likelihood estimation

Activation likelihood estimation (ALE) and related techniques
(Turkeltaub et al., 2002; Chein et al., 2002; Wager et al., 2003)
moved CBMA a quantum leap forward. ALE input data are activa-
tion–location coordinates from conceptually related studies; e.g., all
Stroop tasks. ALE models the uncertainty in localization of activation
foci using Gaussian probability density distributions. The voxel-wise
union of these distributions yields the ALE value, an estimate of the
likelihood that at least one of the foci in a dataset was truly located
at a given voxel. As with FVM, a great advantage of ALE is that the ta-
bles of coordinates routinely reported by neuroimaging studies are its
input data: “raw” data are not required. Unlike FVM, however, ALE re-
quires no user selection of comparable coordinates for modeling:
rather, once a set of experiments (e.g. a group of experiments using
similar paradigm) is selected for meta-analysis, the entire set of
reported coordinates is used, thereby greatly increasing the repro-
ducibility and objectivity of the analysis.

In the original implementation of ALE, there were several ac-
knowledged limitations. For example, while applying false discovery
rate (FDR) method to compute voxel-wise significance, Turkeltaub
used a fixed-effect analysis that did not correct for multiple compar-
isons; the size of the modeled Gaussian distribution was rationalized
based on the spatial resolution of the input images, rather than on a
formal estimate of spatial uncertainty. In short, a method for compar-
ing ALE maps was lacking; there were no correction for the variable
number of activations reported per experiment or the number of ex-
periments per paper. Many of limitations subsequently have been
addressed by various investigators. Laird et al. (2005a) provided a
correction for multiple comparisons and a method for ALE–ALE statis-
tical contrast. Eickhoff et al. (2009) introduced empirical estimates of
between-subject and between-template spatial variability (a modifi-
cation of the FVM spatial probability model) in place of user-
selected Gaussian filtering. In addition, the permutation test was
modified to test for the above-chance clustering between experi-
ments in an anatomically constrained space (gray-matter only),
resulting in a transition from fixed-effects to random-effects infer-
ence. Turkeltaub et al. (2012) introduced corrections for the variable
numbers of foci per experiment and experiments per paper, to pre-
vent undue weighting of ALE maps by individual experiments (e.g.,
with large numbers of foci) or individual papers (e.g., with multiple
similar experiments.) Each of these additions increased statistical
rigor and specificity without decreasing sensitivity.

Since its introduction, ALE has been applied to many aspects of
normal brain function (Decety and Lamm, 2007; Costafreda et al.,
2008; Spreng et al., 2009; Soros et al., 2009), as well as in studies of
neuropsychiatric and neurological disorders, such as schizophrenia
(Ragland et al., 2009; Minzenberg et al., 2009; Glahn et al., 2005), ob-
sessive–compulsive disorder (Menzies et al., 2008), depression
(Fitzgerald et al., 2008), and developmental stuttering (Brown et al.,
2005). Recently, ALE has been extended to voxel-based morphometry
(Schroeter et al., 2007; Glahn et al., 2008; Ellison-Wright et al., 2008)
and diffusion tensor imaging studies (Ellison-Wright and Bullmore,
2009). The most interesting ALE applications do not merely merge
previous results, but also identify previously unspecified spatial re-
gions, resolve conflicting views, validate new paradigms and generate
hypotheses (including spatial models, below) for experimental test-
ing. A more comprehensive list of ALE studies and algorithms is avail-
able at www.brainmap.org/pubs.
Within-paradigm network discovery

As a voxel-based algorithm, ALE identifies foci having significant
co-occurrence probabilities across studies. In graphical modeling,
these foci serve as “nodes”. Having used ALE to identify nodes, it
should be possible to use the co-occurrence patterns among nodes
in a CBMA data set to compute “edges”, creating a fully meta-
analytic neural system model. To explore this possibility, Neumann
and colleagues applied replicator dynamics: a network discovery
technique from theoretical biology. Replicator dynamics detects net-
works of strongly interacting entities using the principles of natural
selection. In the context of fMRI data analysis, it can be employed to
explore relations between voxels within the same cortical areas and,
most importantly, to reveal interdependencies between different cor-
tical areas (Lohmann and Bohn, 2002). Neumann extended this strat-
egy by developing Replicator Dynamics Network Analysis (RDNA), a
meta-analytic method using an ALE dataset to define nodes and
then computes edges from the per-experiment spatial probability
density maps. RDNA was successfully applied to the Stroop task
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(using data drawn from the BrainMap database) to identify the dom-
inant clique present in these data (Neumann et al., 2005).

Because Neumann's implementation of RDNA was limited to iden-
tification of a single dominant clique, Lancaster and colleagues modi-
fied the RDNA algorithm to provide multiple subnets (Lancaster et al.,
2005). Lancaster also introduced fractional similarity network analy-
sis (FSNA), which is based on a pattern-matching strategy using the
Jaccard similarity measure. As applied to neuroimaging data, FSNA
takes as input an ALE data set. The pattern-matching algorithm is ap-
plied at the per-experiment level to form similarity subnets. Similar-
ity subsets are groupings of members that are most similar in their
patterns of occurrence. The FSNA algorithm is a robust and general
scheme that identifies similarity subsets, where set elements can be
characterized using a fixed length binary feature pattern. The length
or dimension of a binary feature pattern is the number of elements
(nodes) used in forming the pattern. Lancaster also evaluated
RDNA and FSNA (using the same Stroop CVM data sets used by
Neumann) with varying thresholds and compared the two tech-
niques. Note that both for these within-paradigm network model-
ing approaches and for the more advanced methods that followed
(below), the “edges” are emergent properties, as the data meta-
analyzed reported only activation sites (“nodes”), extracting
Fig. 7. Meta-analytic connectivity modeling (MACM). The co-occurrence-based functional
prevalent right lateralization. Colors from blue to green indicate a prevalent left lateralizati
tivations from only 57 experiments from the BrainMap database), validation by compariso
dence. For more details, see Cauda et al. (2011).
“functional integration” information from “functional segregation”
studies.

Between-paradigm meta-analytic connectivity modeling

While the approaches above are based on within-paradigm co-
occurrence patterns, between-paradigm co-occurrence patterns can
also serve as a source of functional connectivity modeling. The basic
argument behind this approach is that just as the correlation of acti-
vations between regions within a single study can be taken as evi-
dence of inter-regional connectivity (e.g., in “traditional” functional
connectivity analyses); and just as the probability of co-occurrence
within paradigm but over studies can be taken as evidence of func-
tional inter-regional connectivity (e.g., in RDNA and FSNA, above);
so can the probability of co-occurrence over paradigms and studies
be used to assess functional connectivity. The connectivity patterns
derived by this class of analysis will not be specific to a single para-
digm, but instead will yield more general (canonical) connectivity
patterns that subserve a wider range of behavioral operations.

To pilot this approach, Koski and Paus (2000) assembled a data-
base of 413 conditional contrasts (individual experiments). The num-
ber of experiments (conditional contrasts) yielding a peak in seven,
connectivity of the nucleus accumbens is shown. Colors from red to yellow indicate a
on. Despite being computed from a relatively small volume of interest (containing ac-
n to a region-seeded analysis of resting-state BOLD fMRI showed excellent correspon-
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pre-defined frontal subdivisions was tabulated and compared for ex-
periments with and without anterior cingulate gyrus (ACG) activa-
tion. Frequency distributions were compared with a chi-squared
test, to identify statistically significant co-occurrences. While viewing
their new approach as quite promising, Koski and Paus's study lacked
any form of validation. Acknowledging this shortcoming, they recom-
mended further explorations of the method using larger data sets
(e.g., the BrainMap database), developing more sophisticated statisti-
cal approaches, and validating the approach against alternative con-
nectivity measures (e.g., TMS/PET). Each of the recommendations
has been adopted by one or more subsequent authors.

Postuma and Dagher (2006) were the first to generate synthetic,
meta-analytic functional connectivity images. For this study, the au-
thors compiled a database of activated locations from 539 experi-
ments. They seeded this dataset with volumes bounding the caudate
nucleus and putamen and observed co-activation patterns “consistent
with the concept of spatially segregated corticostriatal connections as
predicted by previous anatomical labeling studies in non-human pri-
mates”. As with the Koski and Paus study, no formal validations were
reported.

The region-seeding (“structure-based”) strategy of Postuma and
Dagher was adopted and extended by Robinson and colleagues in
application to the amygdala (Robinson et al., 2010), using the Har-
vard/Oxford atlas to define the amygdala region of interest. To com-
pute co-occurrence probabilities, Robinson applied ALE, terming
the output a “structure-based” (i.e., region seeded) “meta-analytic
connectivity model” (MACM). By way of validation, Robinson com-
pared the MACM amygdala-connectivity results with those
obtained by tract-tracing in rhesus monkeys, as reported in the
CoCoMac database (Stephan et al., 2000). For the MACM analysis,
the BrainMap database provided 170 and 156 experiments for the
left and right amygdala, respectively and found startlingly good
correspondence.

The first within-species validation of the MACM approach was
provided by Eickhoff et al. (2010), using diffusion tensor imaging
(DTI) probabilistic tractography to confirm MACM-derived connec-
tivity. For this validation, Eickhoff drew upon previously defined
cytoarchitectonic subdivisions of the human parietal operculum
(Eickhoff et al., 2010); a parcellation scheme believed to be homolo-
gous to that described in the rhesus monkey. The connectivity pat-
terns of the two most well studied subdivisions (OP1 and OP4)
were compared across techniques. For MACM, the regions of interest
jointly extracted 245 experiments from the BrainMap database. For
DTI, 18 healthy normal volunteers were studied. Comparison of
Fig. 8. Connectivity-based parcellation. Connectivity-based parcellation of the amygda-
la, using the BrainMap database (right) shows good spatial contiguity and localization
in accordance with microscopically observed parcellation (left) (Amunts et al., 2005).
Blue = corresponds to laterobasal nuclei group, red = corresponds to centromedial
nuclei group, and green = corresponds to superficial nuclei group. Images were ren-
dered using Mango (multi-image analysis GUI; http://ric.uthscsa.edu/mango/). Figure
courtesy of Danilo Bzdok.
connectivity patterns between techniques showed close (but not per-
fect) correspondence. It should be noted that DTI tractography will
provide connectivity limited to first-order (direct) connections, while
MACM – showing all co-occurrences – would be expected to yield
both direct and indirect connections. Further, DTI will be intrinsical-
ly biased toward heavily myelinated connections, while MACM should
preclude this bias.

The second within-species validation of meta-analytic functional
connectivity compared resting-state functional connectivity (using
BOLD fMRI) to MACM in the nucleus accumbens (Cauda et al.,
2011). For the nucleus accumbens region-of-interest, BrainMap pro-
vided 57 experiments, a relatively small input data set. For resting-
state fMRI, 17 healthy subjects were studied. Despite the limited
amount of BrainMap data utilized, the MACM proved robust (Fig. 7),
as did the RSN map. Overall, the two techniques converged, with
resting-state connectivity showing somewhat greater sensitivity
than MACM. In this context, it is important to note that the sensitivity
of MACM is strongly influenced by the size of the seed region and the
volume of data in the BrainMap database. As the database becomes
more populated, the sensitivity of MACMwill increase and allow pro-
gressively finer anatomical connectivity parcellations. It should also
be noted that Eickhoff, Robinson and Cauda all made use of BrainMap
behavioral domain and/or paradigm class metadata to interpret the
functional roles of both the seed regions and their connections.

A third class of validation of the MACM strategy applies
connectivity-based parcellation to BrainMap data, compared the
resulting segmentation to borders defined by other methods.
Connectivity-based parcellation has been shown to provide a close
correspondence between structurally and functionally defined bor-
ders, using the boundary between SMA and pre-SMA as a demonstra-
tion case (Johansen-Berg et al., 2004). Eickhoff et al. (2011) applied
connectivity-based parcellation BrainMap data, for the same brain re-
gions (SMA and pre-SMA) obtaining the same borders. In an even
more telling validation, Bzdok et al. (personal communication) ap-
plied connectivity-based parcellation to the BrainMap data for the
amygdala, demonstrating a close correspondence to previously de-
fined cytoarchitecture borders (Fig. 8).
Fig. 9. Bayesian network discovery. A Bayesian network extracted from the BrainMap
database is shown. Bayesian networks are directed acyclic graphs (DAGS) computed
by the conditional probabilities of co-occurrences. The nodes of the graph were select-
ed by a step-wise filtering of the database to identify the thirteen most commonly co-
occurring regions among the 49 most commonly occurring regions. The regions include
part of posterior medial frontal cortex (pMFC), anterior cingulate cortex (ACC), lateral
prefrontal cortex (LPFC), dorsal premotor cortex bilaterally (dPMC), insula (Ins), and
anterior intraparietal sulcus (IPS). While this analysis required an exceptional volume
of data, it demonstrates the suitability of the BrainMap database for Bayesian inferen-
tial approaches including discovery of directed graphs. For more details, see Neumann
et al. (2010).
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Bayesian network discovery

A very recent advance in the use of CBMA for connectivity model-
ing was reported by Neumann et al. (2010), who built on the use of
Bayesian networks for the representation of statistical dependencies.
Bayesian networks are probabilistic graphical models representing a
set of random variables and their probabilistic interdependencies.
More formally, a Bayesian network is a directed acyclic graph (DAG)
that comprises a set of nodes (vertices) and directed links (edges)
connecting these nodes. Bayesian networks were chosen, for three
reasons. First, they belong to the class of directed graphical models,
which enables us to investigate directed interdependencies between
the activation of different brain regions. Second, the structure of
Bayesian networks can be inferred from observed data. In other
words, we can learn the statistical interdependencies between the
brain regions from activations observed across a number of imaging
experiments. Third, the theory for learning Bayesian networks from
data has been fully established.

In application to neuroimaging meta-analysis, Neumann's ap-
proach used co-activation patterns of brain regions across imaging
studies and learned the structure of the underlying directed acyclic
graphs. This was done by first computing an ALE map of a large subset
(2505 experiments) of the BrainMap data. This map first was restrict-
ed to the 49 most commonly occurring regions and then was further
restricted to the 13 most commonly co-occurring regions, using three
separate applications of the replicator dynamics process, each of
which identified sub-sets of regions. The regions included part of
the posterior medial frontal cortex primarily covering supplementary
and pre-supplementary motor areas, anterior cingulate cortex, poste-
rior parts of the lateral prefrontal cortex bilaterally, dorsal premotor
cortex bilaterally, left and right anterior insula, left and right thala-
mus, left and right anterior intraparietal sulcus and left cerebellum.
For these regions, DAGs were computed for groupings provided by
each run of replicator dynamics and for the collection of all regions.
Fig. 10. Independent component analysis. Ten well-matched pairs of networks from the
completely separate analysis of) the 36-subject resting FMRI dataset. This figure shows the
fMRI data, shown superimposed on the mean fMRI image from all subjects. (Right column
The DAG computed for a 10-node grouping (run 3) is illustrated in
Fig. 9.

Supplementing this real-world application with extensive simula-
tions, Neumann demonstrated that structure learning for Bayesian
networks can be used to infer partially directed functional networks
from fMRI meta-analysis data. For small numbers of functional re-
gions, directed and undirected statistical interdependencies (func-
tional connectivity) can be reliably detected from a few tens or
hundreds of observations. In larger networks, at least a subset of
expected interdependencies is reliably detectable, given sufficient
data. This is in keeping with the Bayesian discovery of networks
using DCM, described above.

Independent component analysis

In the two preceding sections, we can see an emerging trend to-
ward methods that exploit large data sets (i.e. using the entire Brain-
Map database or large subsets thereof) even if they are behaviorally
inhomogeneous (i.e., not based on the same paradigm). The most ex-
treme examples of this trend are seen in the recent publications by
Toro et al. (2008) and by Smith et al. (2009).

Toro and colleagues used the BrainMap database to generate a
comprehensive “connectivity atlas”. At the time this atlas was gener-
ated, BrainMap included 3402 experiments (conditional contrasts)
reporting a total of 27,909 activated locations. For each experiment,
a binary, per-study activation volume was generated at a voxel-size
of 4 mm3 isotropic. From these, the co-occurrence pattern likelihood
was computed between all voxels, using likelihood ratios. This gener-
ated 45,000 unique co-activation maps (one for each 4 mm3 voxel in
the brain). Reproducibility of the co-activation map was assessed by
estimating the similarity between pairs of partial co-activation maps
that used disjoint random subsamples of experiments for group
sizes of 500, 1000, 1500, 2000, 2500 and 3000. The correlation be-
tween maps was significant and increased asymptotically with the
20-component analysis of the 29,671-subject BrainMap activation database and (a
3 most informative orthogonal slices for each pair. (Left column of each pair) Resting
of each pair). For more details, see Smith et al. (2009).
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Fig. 11. Behavioral domain profiles. Behavior domain profiles are shown for amygdala. The difference in the behavioral domain profiles of the amygdala (Row B) and the whole-
brain (whole-database; Row A) is apparent, with a much greater participation of the amygdala in tasks categorized as involving “Emotion”. Further, there may be a difference in
behavioral profile of the right and left amygdala, when the specific types of emotion are considered (Row C). For more details, see Robinson et al. (2010).
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number of experiments, being reasonably high with only 500 experi-
ments. Thus, the co-activation maps did not depend on a particular
choice of experiments, and there existed a robust structure in the
meta-analytic functional connectivity that can be recovered even
with a moderate number of studies. This dataset was probed by
selecting seed regions in three networks widely described in the
functional neuroimaging literature and, in particular, in resting-state
fMRI studies: the frontal/parietal “attention” network, the “default
mode network”, and the cortical/diencephalic/cerebellar “motor” net-
work (Fox et al., 2005a,b). In each case, the correspondence between
the CBMA-derived connectivity maps and the resting-state fMRI-
derived networks was remarkable.

image of Fig.�11
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Stimulated by Toro's observations, Smith and colleagues took this
strategy a step further, and applied ICA to the entire BrainMap data
(Smith et al., 2009). ICA has been widely used to demonstrate intrin-
sic connectivity networks in the resting brain using fMRI (i.e., resting-
state networks or RSNs). Although observed at rest, Fox and Raichle
(2007) proposed that RSNs represent basic organizational units of
the brain, being “functional networks” drawn upon during task per-
formance. Smith tested this hypothesis by comparing ICA decomposi-
tions of resting-state fMRI to those derived from the entirety of the
BrainMap data. At the time of this data extraction (2007), BrainMap
contained 7432 experiments, representing imaging studies from
29,671 human subjects. In parallel, ICA analyses were performed
using resting-state fMRI data from 36 healthy volunteers. Decomposi-
tions were performed into both 20 and 70 components.

Of the 20 components generated separately from the two datasets,
ten maps from each set were unambiguously paired between datasets,
Fig. 12. Behavioral domain filtering. A MACM of the caudate nucleus filtered by the top tier o
their behavioral specificity, ranging from having a single dominant domain to having four w
the primate literature and were confirmed by DTI tractography.
Figure courtesy of Jennifer Robinson.
with a minimum correlation r=0.25 (pb10−5, corrected for multiple
comparisons and for spatial smoothness.) These ten well-matched
pairs of networks are shown in Fig. 10. With an ICA dimensionality of
70, the primary networks split into subnets in similar (but not identical)
ways, continuing to show close correspondence between BrainMap and
RSN components. This argues that the full repertoire of functional net-
works utilized by the brain in action (coded in BrainMap) is continuous-
ly and dynamically “active” even when at “rest” and, vice versa, that
RSNs represent an intrinsic functional architecture of the brain that is
drawn upon to support task performance.

Functional ontologies

For system modeling, meta-analysis has the substantial advantage
of being able to filter its findings with the behavioral metadata asso-
ciated with each experiment in the BrainMap database. Behavioral
f the behavioral domain hierarchy is illustrated. Caudate-connected regions differed in
ell-represented domains. The projection patterns closely matched those established in
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filtering has been widely used in selecting papers for inclusion in a
meta-analysis (discussed in Fox et al., 2005b). A more recently devel-
oped use of behavioral metadata is to characterize the behavioral
properties of a specific region, e.g., the target of a structure-based
meta-analysis (Robinson et al., 2010; Cauda et al., 2011). Fig. 11 illus-
trates the use of behavioral domain field to categorize the functional
specificity of the Amygdala in the context of structure-based
MACMs. Statistical methods to test for between-region differences
in behavioral domain profiles have been developed and will be re-
leased pending ongoing validations (J. Lancaster, S. Eickhoff, A.
Laird, P. Fox and colleagues). Using this approach, it appears that –
given sufficient numbers of experiments and well-developed behav-
ioral metadata – unique behavioral characterization of individual
brain regions is a viable possibility. This will be done, however, by
means of complex behavioral profiles, rather than by assigning a con-
cisely described (“put”, “get”, “move”), individual mental operation to
each brain region, as Posner et al. (1998) had suggested. This ap-
proach is in keeping with the view of Price and Friston (2005), who
argued that the mapping between mental operations and brain re-
gions is a many-to-many mapping, in which a single region can be in-
volved in many cognitive processes and a single elementary process
engages multiple regions. It is also concordant with the argument
put forward by Poldrack (2006), that the cognitive “reverse infer-
ence” (i.e., that a specific mental operation is necessarily engaged if
a particular brain region is activated) is intrinsically weak due (in
part) to participation of individual regions in multiple cognitive
operations.

An extension of the behavioral domain profile approach is to extract
profiles for multiple regions jointly, i.e., to characterize a functional net-
work. This strategy was employed by Laird et al. (2009a,b,c), in work
which behaviorally categorized the default mode network (DMN), ex-
amining behavioral domain profiles of individual areas and of groups of
areas (i.e., sub networks). An extension of this concept, recently devel-
oped by J. Robinson, is using behavioral domains to filter meta-analytic
Fig. 13. Behavioral domain ICA and hierarchical clustering. Mapping of BrainMap metadata
domain categorization were correlated with ten of the primary functional networks in a h
et al., 2009 for more details.) On the right, the metadata analysis has been extended to includ
tering was used to group the ICA into spatially and behaviorally related clusters for all 20 I
connectivity models, creating models of functionally specific projec-
tions of individual brain structures. This is illustrated in Fig. 12, in
which the projections (co-activation patterns) of the caudate nucleus
were filtered by BrainMap behavioral domains. Note that cortical com-
ponents of the cognitive, motoric, perceptual and emotional networks
are largely discrete. This strategy of mapping the behavioral specificity
by pathway provides the additional benefit of a disclosing a previously
undescribed functional sub-segregation of the human caudate nucleus
which appears homologous to the non-human primate.

Another strategy for meta-analytic structure–function inference
was pioneered by Smith et al. (2009), in the context of applying ICA
to the BrainMap database. Fig. 12 (left side) is a “heat map” showing
the respective contributions of BrainMap behavioral domains to indi-
vidual components in the ICA shown in Fig. 9. Close inspection reveals
that some components have very high behavioral specificity, while
other components have contributions from a wide range of behavior-
al domains. The ICA-based strategy of Smith and colleagues has been
extended by Laird and colleagues (manuscript in review) both by
enriching the metadata included in the analysis and by applying hier-
archical clustering analysis to sort components into functionally relat-
ed groupings (Fig. 13, right side). While this approach provided a
much more refined association of components with behaviors, some
components still show limited behavioral specificity. The most likely
explanation for this lack of behavioral specificity in some networks
is two-fold: First, the behavioral specificity of some regions and net-
works (“hubs” in the terminology of Small World modeling) is almost
certainly low. Hub regions are engaged in a wide variety of tasks and
will defy precise behavioral characterization. Second, a more evolved
functional ontology is needed, as has been argued (Price and Friston,
2005; Poldrack, 2006). Relative to the second cause, the approaches
illustrated here, we would suggest, provide the tools for ontology
development to proceed programmatically. This can be deter-
mined by targeting networks that show limited behavioral do-
main specificity and enriching the metadata, e.g., by adding
onto ICA components are shown. On the left panel, twenty (of 66) of the behavioral
eat-map representation of a 20-component ICA of the BrainMap database. (See Smith
e 50 behavioral domain categories and 75 paradigm class categories. Hierarchical clus-
CA components. For more details, see Laird et al. (2011).
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levels to the coding hierarchy. This work is ongoing (Fox et al.,
2005a,b; Laird et al., 2011). Ultimately, categorizations of behavior
that are reflected in the network properties of the brain will have
superior intrinsic validity and utility than those based solely on
cognitive theory.

A closing point of some importance is that meta-analysis offers the
most versatile, most powerful extant approach for discovering the be-
havioral significance of networksmapped using either DTI tractography
or resting-state fMRI. DTI, being an anatomical technique, contains no
behavioral information. Resting-state fMRI, being performed “at rest”,
is not under experimental control, leaving the behavior unspecified.
Both DTI and resting-state fMRI have been shown to provide very sim-
ilar connectivity maps to MACM. Consequently, behavioral character-
izations provided for MACM-defined pathways should be reasonably
applied to pathways defined by the other techniques.

Meta-analyses as priors

The family of coordinate-based meta-analysis methods described
above may appear to be conceptually discrete methods. In practice,
however, they tend to be applied serially, with simpler forms of
meta-analysis providing input for more advanced forms. For example,
FSNA and RDA (above) take an ALE volume as input and compute a
paradigm-specific system-model. Similarly, Neumann et al. (2010)
used ALE to identify nodes before doing Bayesian network discovery.
The MACM approach of Robinson et al. (2010) used ALE to provide
priors. While these are examples of CBMAs providing priors for
CBMAs, the strategy is more general. Karlsgodt et al. (2010), for ex-
ample, used ALE to select regions-of-interest for analysis for an anal-
ysis of brain-behavior pleiotropy (one to many mapping) of visual
working memory. The most advanced and impactful use of CBMA to
provide priors is in the domain of graphical modeling, as follows.

System-level modeling approaches most commonly applied to
functional neuroimaging data (SEM, DCM and Small World model-
ing), are confirmatory methods that require strong a priori hypothe-
ses about the regions involved (nodes) and their interdependencies
(edges). Otherwise stated, well-chosen priors improve model fit
(Stephan et al., 2009). Given ability of the several approaches
Fig. 14. Meta-analytic neural system models. Meta-analytically derived graphical models ar
represented, divided into behaviorally specific cliques. Nine nodes in the model were determ
ing the original description of the DMN (Shulman et al., 1997). For each of the nine nodes, b
of the nodes and to inform grouping into behaviorally related cliques. MACMwas then perfor
indicates that an endpoint region was observed in the region-seeded MACM of a starting-p
model of the scenario-based trauma recall task as performed in patients with post-traumatic
to those described for the right panel, but limiting input to studies reporting activations in
Figure courtesy of Amy Ramage.
described above to provide fairly complete, data-driven models,
their use as priors for graphical modeling seems quite promising. Per-
haps the first application of this strategy was reported by Laird, who
used an ALE meta-analysis of TMS/PET studies of primary motor cor-
tex to inform an SEM analysis of a TMS/PET dataset (Laird et al.,
2008). The goodness of fit of the model thus derived to the data
was quite striking, endorsing the value of this strategy. A subsequent
application of the strategy used previously published ALE meta-
analyses of stuttered and non-stuttered speech (Brown et al., 2005)
as priors for fitting PET data during cued speech in persons with
and without stuttering (Price et al., 2009). Again, the goodness-of-
fit of the ALE-based models to datasets was striking. Further, this
strategy allowed excellent between-group (stuttering vs. non-
stuttering) discrimination with group sizes as small as 15
(power>0.8). This strongly suggests a role for this analysis and
modeling approach to treatment trials, using graphical models to
characterize the brain mechanisms of action of treatments in patient
groups. This strategy is currently being explored in treatment trials
of post-traumatic stress disorder in a military population (Fig. 14),
in persistent developmental stuttering and in Parkinson's disease by
Fox and colleagues.

Summary

In summary, coordinate-based meta-analytic approaches have
evolved rapidly over the past decade, becoming progressively more ef-
fective atmining the vast volumeof the functional and structural neuro-
imaging literature. While early CBMA methods focused on activation
likelihood estimation, subsequent methods have extended this ap-
proach to inter-regional dependencies and characterization of the be-
havioral properties of regions and networks. The networks extracted
by CBMA have been repeatedly validated relative to those extracted
by other connectivity imaging methods (e.g., DTI and RSNs), allowing
the behavioral inferences uniquely provided by CBMA to be applied to
these data sets. The ultimate goal of these meta-analytic methods is to
inform subsequent studies, both by informing interpretation of ob-
served results and by providing well-formulated, spatially specific hy-
potheses – including graphical models – to guide experimental design
e illustrated. In the left panel, a graphical model of the default mode network (DMN) is
ined by ALE meta-analysis of “task-negative” responses from 119 experiments, follow-
ehavioral domain profiles were generated, to characterize the “task-positive” functions
med on each of the nine nodes, to yield per-node connectivity maps. Path directionality
oint region. (For more detail, see Laird et al., 2009a,b,c). In the right panel, a graphical
stress disorder (PTSD) is illustrated. The model was generated using procedures similar
duced by the trauma recall task in PTSD patients and normal volunteers.
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and statistical analysis, including construction of graphical models as
priors for causal analysis (SEM, DEM) and other model-based analysis.

Conclusion

In conclusion, we have reviewed some of the remarkable advances
in imaging neuroscience over the past two decades, with a special
focus on functional integration and distributed processing. In the
first section, we covered developments in network discovery and
the analysis of effective connectivity at a mechanistic and neural
level. In the second section, we saw that the concepts of functional
connectivity transcend measures of neuronal activity and can be
used to characterize interregional dependencies at a much larger
(meta-analytic) scale. In both settings, the deep questions pertain to
how processing is distributed over neuronal networks and the effec-
tive or functional connectivity among their nodes.

From the point of view of this review, there has been a notable
shift from early questions about functional segregation such as
“Which area does my paradigm activate?” to questions about func-
tional integration. In this context, the experimental paradigms and
the associated cognitive constructs serve simply to elicit activations
(and co-activations) that are then used to infer connectivity architec-
tures. At the level of effective connectivity, this is self-evident in the
way that various experimental factors are modeled in terms of
influencing connections. In this context, we have also seen that cogni-
tive constructs are not always necessary to disclose processing princi-
ples; for example, in the analysis of task-free paradigms and
endogenous fluctuations. In meta-analyses, the paradigms and under-
lying cognitive ontology serve to delimit (filter) the data that are sub-
ject to co-activation analysis. In this sense, they provide a constraint
or context, within which to understand the functional affiliations of
the distributed patterns inherent in data. Perhaps surprisingly, some
of the most interesting results were obtained with very large datasets,
in which these constraints are relaxed completely and all brain acti-
vations are considered collectively.

In terms of structure–function relationships, the meta-analytic
treatments described above clearly reflect a greater role for neuro-
physiology in defining meaningful brain systems. It is also evident
that the way forward, in terms of quantifying structure function map-
pings, lies in assimilating large amounts of physiological and cogni-
tive variables. One might anticipate that over the next few years
people will apply the techniques described above, not just to the con-
ditional contrasts encoding brain activations, but to concatenated
vectors of data that encode the activations and the experimental fac-
tors (and implicit cognitive processing components) that elicit them.
In other words, we can apply current techniques to look not just for
connections between brain regions but for connections between re-
gions and cognitive processes in (abstract) cognitive spaces. Concep-
tually, these connections are formally what we mean by a structure–
function mapping.

In terms of integrating analyses of effective connectivity described
in the first section and meta-analyses of functional connectivity de-
scribed in the second, there are some potentially exciting avenues
that suggest themselves: we have noted above that the role of
meta-analysis is to provide constraints or prior beliefs that can inform
more detailed modeling of within-paradigm data. The mechanisms
for this integration are largely in place and involve using the meta-
analytic functional connectivity as priors on effective connectivity.
This has already proven a fruitful strategy when combining probabi-
listic information from tractography and dynamic causal modeling.
The idea here is to show models that are meta-analytically informed
have more evidence than the equivalent model without meta-
analytic priors. Not only would this nuance the study of effective con-
nectivity but would provide definitive evidence for the large scale and
generic constructs provided by meta-analyses. We are currently pur-
suing this.
In conclusion, we hope to have described the key trends and ideas
that we have been pursuing since the inception of human brain map-
ping and comment upon the direction these ideas are taking us. We
appreciate that this may be something of a colloquial perspective
but it is one that engages us and a growing number of researchers
in imaging neuroscience.
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