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 The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have

limited understanding of its functional interactions with other regions. Previous work have started to examine
functional connectivity in several brain areas using resting state functional connectivity (RSFC) and
meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has also been
proposed as a technique that may also allow delineation of functional connectivity. Here, we applied
these three approaches to provide a comprehensive characterization of functional connectivity with a
seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as
playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting
state data and anatomical scans from132 participants, and the BrainMap database, which contains peak activation
foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping
analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor,
and parietal regions, while the SC map identifiedmore widespread frontal regions. Analyses indicated a relatively
consistent pattern of functional connectivity between RSFC andMACM thatwas distinct from that identifiedby SC.
Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and
executive functions, suggesting that the dPMC acts as an interface between motor control and cognition.

© 2015 Published by Elsevier Inc.
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Introduction

Converging evidence from single cell recordings, human neuroimag-
ing, and neurostimulation paradigms indicate that the dorsal premotor
cortex (dPMC) plays an important part in sensorimotor integration,
response selection, andmotor learning. Importantly, single-cell recording
studies in non-human primates indicate the dPMC has limited ability to
directly contribute to movement execution (Boudrias et al., 2010; Dum
and Strick, 2005), but the region contains a high proportion of cells that
respond to sensory cues, motor cues, or both (Weinrich and Wise,
1982). Thus, it has been suggested that the dPMC integrates sensory
and motor information (Roland et al., 1980; Weinrich andWise, 1982).
Converging evidence from neuroimaging, neurostimulation, and
neuropsychology indicates that the dorsal premotor cortex (dPMC) has
a critical role in response selection (Bestmann et al., 2008; Halsband
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et al., 1993; O’Shea et al., 2007; Rushworth et al., 2003; Zhang et al.,
2011). There is also considerable evidence that the left dPMC in particular
plays a dominant role in visuomotor integration processes,while the right
dPMC is subservient (Bestmann et al., 2008; Hardwick et al., 2013;
Schubotz and von Cramon, 2002a, 2002b). Finally, a recent meta-
analysis of human neuroimaging studies has shown that the left dorsal
premotor cortex (dPMC) is consistently activated across a wide range of
motor learning paradigms, regardless of movement execution or the
hand being used (Hardwick et al., 2013). As of yet, however, the function-
al network of brain areas which interact with the left dPMC is relatively
unclear. Identifying the regions that functionally interact with the left
dPMC in humans would therefore further our understanding of how
this key node in the sensorimotor system contributes to response selec-
tion and motor learning.

Functional connectivity refers to the temporal coincidence of
spatially distant neurophysiological events (Friston, 1994). It is often
operationalized as a statistical relationship (usually a correlation)
between local neurobiological measures, and can therefore be considered
as a broad concept rather than one specific methodology. The advent of
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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multiple connectivity analysis techniques in recent years has led to the
possibility of assessingdifferent aspects of functional connectivity. Resting
state functional connectivity (RSFC) is driven by changes in BOLD activity
in the absence of an experimental task (for a review, see Biswal, 2012). In
seed-based correlation analysis, the time course of lower frequencies in
the BOLD response extracted from a seed region are then compared
with those of all voxels across the rest of the brain, with significant
positive correlations implying functional connectivity. RSFC analyses
offer the advantage of readily examining whole-brain connectivity
without the constraint of a particular task. In comparison, meta-analytic
connectivity modelling (MACM) provides a task-based approach to
functional connectivity. MACM uses databases of activation peaks
from neuroimaging studies to identify consistent co-activations across
experiments (Eickhoff et al., 2010). While experiments are retrieved
based on activation within a seed region, significant convergence of
coordinates outside the seed reflects above-chance co-activation and
hence implies functional connectivity. The large scale of the databases
from which MACM analyses are derived provide a great strength to
the technique (e.g. the BrainMap database contains N10,000 contrasts
with N40,000 subjects). Finally, structural covariance (SC) uses the
strength of grey matter volume correlations across the brain as an
indicator of past co-activity. The underlying notion is that frequent acti-
vation leads to plastic changes in grey matter volume (Draganski et al.,
2004), and frequently interacting (co-activating) regions thus co-vary
in their grey matter densities (see, for example, Lerch et al., 2006).
Thus, while SC uses a structural brain measure (grey matter volume),
it crucially hinges upon functional interaction between brain regions
following the principle of Hebbian plasticity (Hebb, 1949). Examining
relationships in greymatter volume allows the assessment of consistent
interaction between brain regions throughout development using a
clearly defined measure, the physiological basis of which is clearly
understood. In that context, it is important to also consider the different
scales of integration (cf. Amunts et al., 2014) represented by these
different methods: RSFC is a within-subject measure, MACM integrates
across group activation findings, and SC is a cross-subject measure and
cannot be determined on a single-subject basis. As previous studies
indicate that functional connectivity is associated with correlated grey
matter volumes (Seeley et al., 2009), we therefore regard it as a 'function-
al connectivity' measure (or, more precisely, a proxy for long-term
functional connectivity patterns) for the purposes of this paper. While
the degree to which SC can be used to infer functional networks has yet
to be established (Clos et al., 2014), it provides a further method
for investigating co-activity with the seed region.

Thus, RSFC, MACM, and SC are well-established techniques with the
common goal of identifying brain networks interacting with the seed
region, and may be used to assess 'functional connectivity' in the human
brain. Each of these techniques probes 'functional connectivity' from a
different angle, and has specific strengths and limitations. However, com-
bining these tools provides a means to identify the core network of brain
areas that consistently interacts with the chosen seed. To date, however,
relatively few studies have directly compared results from these differing
approaches. Recent papers combining the results of RSFC and MACM
analyses have suggested good correspondence between the twomethod-
ologies (Bzdok et al., 2013; Clos et al., 2014; Hoffstaedter et al., 2013a;
Jakobs et al., 2012; Müller et al., 2013; Rottschy et al., 2013). Results
from comparisons of RSFC and SC also report correspondence between
the two methodological approaches (Segall et al., 2012). While a
combination of RSFC, MACM, and SC has previously been implemented
as a method for parcellation (Kelly et al., 2012), only recently has a
comparison of seed-based functional connectivity patterns arising from
these three techniques been considered (Clos et al., 2014). As all three
techniques use different methods to measure the same construct,
comparing and contrasting their results provides a more comprehensive
overview of 'functional connectivity'. In particular, a triangulation of
their results would provide compelling evidence of the core functional
connectivity with the seed region.
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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The importance of the left dPMC as a hub for sensorimotor integration
makes it a prime candidate for examination using functional connectivity
techniques. A recentmeta-analysis has identified an area of the left dPMC
thatwas the only region to consistently show increases in activity across a
wide variety of motor learning paradigms (Hardwick et al., 2013). The
essential role of this region in motor learning has not been recognized
in previous models, which have primarily focused on the roles of the
primary motor cortex and cerebellum in motor learning (e.g. Krakauer
and Mazzoni, 2011). Identifying regions that functionally interact with
this seed will therefore further our understanding of the network of
areas that may contribute to motor learning. Here, we applied RSFC,
MACM, and SC connectivity mapping techniques to provide a compre-
hensive overview of functional connectivity with this left dPMC seed
region.

Material and methods

Seed region

A seed region in the left dPMC was defined based on the results of a
recent meta-analysis of motor learning (Hardwick et al., 2013). This
35mm3 region (peakMNI coordinates−32,−12, 60) survived a series
of conjunctions across multiple subanalyses. These subanalyses strictly
controlled for potentially confounding activations related to movement
execution (i.e. considered only contrasts that compared movement
during learning with execution of a similar baseline movement), and
controlled for potential laterality effects due to the hand being used to
perform the task. This area was therefore consistently activated across
a wide variety of motor learning tasks. Data from two sources were
utilized to assess functional connectivity with this seed region.

Data sources

The Rockland sample
The RSFC and SC analyses used data from the Nathan Kline Institute

“Rockland” cohort (Nooner et al., 2012), available online via the Interna-
tional Neuroimaging Data sharing initiative (http://fcon_1000.projects.
nitrc.org/indi/pro/nki.html). The sample used from this cohort consisted
of 132 healthy subjects (78 M, 54 F), aged 18–85 years (mean ± SD:
42.3±18.1 years). This samplewas chosen as it provides a representative
sample, and thus provides results that can be assumed to be representa-
tive of the general population.

The BrainMap database
The MACM analysis was conducted using the BrainMap database

(Laird et al., 2011), using group average peak activation coordinates
from neuroimaging studies examining within-subject contrasts in
healthy individuals ("normal mapping", i.e., excluding any interventions
such as pharmacological challenges, any longitudinal designs, andpatient
data, any between-group comparisons to test for differences, e.g.
between genders). The BrainMap database was employed to identify
task-based co-activation patterns across a large pool of neuroimag-
ing experiments. At the time of processing, the database contained
stereotaxic peak activation data including approximately 85,000
coordinates (foci) drawn from over 40,000 subjects across more
than 10,000 experiments.

Functional connectivity analyses

Seed-based resting state functional connectivity
Images were acquired using a Siemens Tim Trio 3 T scanner using

blood oxygen level–dependent (BOLD) contrast (260 whole-brain
echo-planar imaging (EPI) volumes per subject, gradient-echo EPI
pulse sequence, repetition time (TR) = 2.5 s, echo time (TE) = 30 ms,
flip angle = 80°, in-plane resolution = 3 × 3 mm2, 38 axial slices
(3 mm thickness)). A seed-based RSFC analysis compares endogenous
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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fluctuations of BOLD activity in the seed region with that of all other
voxels in the brain as a marker of functional connectivity under
task-free conditions. Data were analyzed using SPM8 (Wellcome
Trust Centre for Neuroimaging, London). The first four scans were
discarded prior to analysis to allow for magnetic field saturation.
The images were then corrected for movements by affine registration
using a two-pass procedure. In the first step, images were aligned to
the initial volumes, then subsequently to the mean of all volumes. The
mean EPI image for each subject was then spatially normalized to the
Montreal Neurological Institute (MNI) single-subject template (Holmes
et al., 1998) using the unified segmentation approach (Ashburner and
Friston, 2005). The resulting deformation was applied to the individual
EPI volumes and images smoothed using a 5-mm full-width half-
maximum (FWHM) Gaussian kernel. Spurious correlations for the
time-series of each voxel were reduced by regressing out the nuisance
variables of (1) the six motion parameters derived from image re-
alignment; (2) their first derivatives; and (3) mean GM, WM, and
CSF intensity. Nuisance variables were entered into the model as
first- and second-order terms (see Satterthwaite et al., 2013 for an
evaluation of this approach). In a final step, the data was band-pass
filtered with cutoff frequencies of 0.01–0.08 Hz. Meaningful resting
state correlations occur predominantly within this frequency band
due to the low-pass filter-like effect of the BOLD signal (Fox and
Raichle, 2007; Power et al., 2012).

The time course was extracted from the functionally defined left
dPMC seed volume for each subject by computing the first eigenvariate
of the time-series’ of those voxels whose grey matter probability was
above themedian across all voxels in the ROI. Linear (Pearson) correlation
coefficients were computed between this seed time series and the time
series of all other grey matter voxels in the brain (Reetz et al., 2012; zu
Eulenburg et al., 2012). The voxel-wise correlation coefficients were
transformed into Fisher’s z-scores and tested for consistency across
subjects by a second-level ANOVA (including non-sphericity correction).
This random effects analysis was family-wise error (FWE) corrected
with a cluster level threshold of p b 0.05 (cluster forming threshold of
p b 0.001 at voxel level).
 C

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326
U
N
C
O

R
R
EMeta-analytic connectivity modelling

Meta-analytic connectivity modelling (MACM; Eickhoff et al., 2010;
Robinson et al., 2010) assesses connectivity by determining brain areas
that co-activate above chancewith a seed region across multiple neuro-
imaging experiments. First, all experiments in the BrainMap database
with at least one peak activation coordinate within the functionally
defined left dPMC seed region were identified. Custom-written MATLAB
scripts were then utilized to conduct an Activation Likelihood Estimation
(ALE) meta-analysis (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2002,
2012) across these in order to identify areas of converging activity across
these experiments. The ALE algorithm empirically determines whether
spatial convergence of foci between studies is greater than expected by
chance. Thehighest convergencebetween studies evidently occurswithin
the seed (as all included experiments were selected based upon activity
within the seed region). Significant convergence in areas beyond the
seed is indicative of consistent co-activation (i.e. functional connectivity)
with the seed region. Inference in the MACM analysis was conducted at
p b 0.05 level (corrected for multiple comparisons using permutation
testing, controlling cluster-level FWE at p b 0.05). While it is possible to
restrict the sample of studies that are examined by MACM analyses,
for instance, to examine only studies looking at motor control (cf.
Hoffstaedter et al., 2013a,b), we here considered all studies within
the BrainMap database. A pre-selection would introduce a bias not
present in the RSFC and SC analyses. Selecting studies based on the
location of their activations alone, however, provides a purely objective
and data-driven approach to the MACM analysis. This allowed for
unbiased comparisons between the results of the RSFC, MACM, and
SC analyses.
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
http://dx.doi.org/10.1016/j.neuroimage.2015.08.024
E
D
 P

R
O

O
F

Structural covariance
Structural covariance examines functional connectivity via correla-

tions between regional greymatter properties such as volume or cortical
thickness (Albaugh et al., 2013; He et al., 2007b; Lerch et al., 2006). Here,
we used local volume as estimated by Voxel-basedmorphometry (VBM)
on the anatomical T1 weighted MPRAGE scans from the 132 subjects in
the Rockland sample to assess structural covariance. Images were
acquired using a Siemens Tim Trio 3 T scanner as per the Rockland
sample protocol (MPRAGE sequence, repetition time (TR) = 2.5 s, echo
time (TE) 3.5 ms, flip angle = 8°, in-plane resolution = 1 × 1 mm2, 192
sagittal slices (1mm thickness). The anatomical scanswere preprocessed
using the VBM8 toolbox (dbm.neuro.uni-jena.de/vbm) in SPM8 using
standard settings (DARTEL normalization, spatially adaptive non-linear
means denoising, a Markov random field weighting of 0.15 and bias
field modelling with a regularization term of 0.0001 and a 60 mm
FWHM cutoff). These normalized grey matter segments, modulated
only for the non-linear components of the deformations into standard
space, were smoothed using an 8 mm FWHM Gaussian kernel (this
normalization process accounts for differences in grey matter volumes
between subjects). Statistical analysis was conducted in FSL1 with non-
parametric statistics using the FSL ‘permute’ function (Jenkinson et al.,
2012; Smith et al., 2004). The volume for the functionally defined dPMC
seed was computed in each subject by integrating the modulated
voxel-wise grey matter probabilities under the seed cluster. This
subject-specific local volume for the dPMC seed was used as the
covariate of interest in the statistical group analysis. Statistical analysis
was performed using the standard GLM implementation in FSL testing
for each voxel whether the local volume of that particular voxel signif-
icantly covaried with the volume of the dPMC. Age was included in the
statistical model as a variable of no interest. Inter-individual differences
in brain volumewere not included in the statistical model because they
were already accounted for in the grey-matter probability maps (grey
matter probability maps were modulated by non-linear components,
and the analysed voxel values represent the absolute amount of tissue
corrected for individual brain size). Significance was assessed at p b 0.05
as implemented by FSL (corrected for multiple comparisons using full
permutation testing of TFCE images, threshold-free cluster enhancement;
Smith and Nichols, 2009).
Difference analyses

Difference analyses identified which brain areas were most strongly
associated with each functional connectivity mapping technique
(Jakobs et al., 2012). These analyses were conducted in a multi-stage
process. First, subtraction analyses were generated to compare the
results from each functional connectivity analysis. The results of these
subtraction analyses were combined in a conjunction on the minimum
value, and masked by the original functional connectivity maps. The
resulting image was thresholded to provide a map of regions with
significantly higher connectivity values than in the counterpart analyses.
For example, to generate a map of the areas that were more strongly
associated with RSFC, the first step was to compute two subtraction
analyses (RSFC minus MACM, RSFC minus SC). These difference anal-
yses were combined in a conjunction, which identified the lowest
value from each analysis for each voxel. The resulting voxels thus
were significantly stronger connected to the seed in RSFC than in
either of the two other techniques. Results were then masked by
the original RSFC map (ensuring that regions most strongly associated
with the RSFC technique would have to demonstrate significant
connectivity during the original RSFC analysis). Finally, the resulting
map was thresholded such that only voxels with a z-score greater
than 1.96 (i.e. p b 0.05) were presented. The resulting map indicates
which areas are more strongly associated with one of the examined
connectivity mapping techniques compared to the other two
methods.
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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Conjunction analyses

Conjunction analyses determined areas that were consistently
activated across multiple brain connectivity approaches. Pairwise
conjunctions were conducted between the three connectivity analyses
in order to identify common results across the differing techniques. In
addition, a combined analysis was performed across the results of
RSFC, SC, and MACM. This combined conjunction thus identified areas
with highly consistent functional connectivity to the left dPMC seed
region. All conjunctions were computed by taking the minimum
statistic (Jakobs et al., 2012; Nichols et al., 2005). Data from MACM
were transformed from 2 mm3 MNI space to 1 mm3 for comparison
with the RSFC and MACM data.

Volume comparisons

Previous studies have suggested that the volumes identified by RSFC,
MACM, and SC show 'good convergence' (Bzdok et al., 2013; Clos et al.,
2014; Hoffstaedter et al., 2013a; Jakobs et al., 2012; Müller et al., 2013;
Rottschy et al., 2013). This has, however, been primarily examined
through visual overlay of the identified maps, without further quantifi-
cation. Here, we compared the volumes identified by each analysis, then
quantified the volumes that were either uniquely identified by one
analysis, or were identified by multiple analyses via conjunction.

Volume-matched analyses

Differences in the approaches employed by each of the analyses led
to differences in the size of the total volumes of the brain that were
identified as having functional connectivity with the motor learning-
related seed region. A control analysis therefore aimed to determine
whether the different functional connectivity mapping techniques
examined identified broadly similar patterns of connectivity that
differedmainly due to differences in statistical thresholding, or whether
the different techniques identified truly divergent networks. The
network with the smallest overall volume was identified (the MACM
map, with a volume of 76,749 mm3). The thresholds of the RSFC and
SC connectivity maps were then iteratively increased until the volumes
they identifiedwere approximately equal to that of theMACMnetwork.
Further volume comparison analyses were then conducted on the
volume-matched maps (Fig. 1).

Labelling

Results were anatomically labelled according to their most probable
macroanatomical and cytoarchitectonic locations using the SPMAnatomy
U
N
C
O

Fig. 1. The left dPMC seed region. A previousmeta-analysis ofmotor learning (Hardwick et al., 2
surviving multiple analyses that strictly controlled for both movement execution and hand use
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Toolbox (Eickhoff et al., 2005, 2007). Additional labels were derived from
a functional meta-analysis of motor cortical regions (Mayka et al., 2006).
Peak maxima of the reported coordinates are presented in 1 mm3 MNI
space. Only regions with 100 cohesive voxels were reported.

Results

Main analyses

Resting state functional connectivity
The RSFC analysis (Fig. 2A) identified regions where the BOLD time

course correlated with that in the left dPMC seed volume. This analysis
revealed a distributednetwork that contains large clusters in frontal and
parietal regions, and smaller clusters in the occipitotemporal cortex,
striatum, and cerebellum. Connectivity with most regions was bilateral,
but stronger in the left supratentorial regions and right cerebellar
regions, consistent with its connectivity with left-lateralized seed.
Specifically, a widespread frontal cluster spanned premotor regions
including the pre-SMA and SMA, ventral and dorsal premotor cortex,
and extended into the bilateral dorsolateral prefrontal cortex, left IFG
and the left anterior insula. A second large bilateral parietal cluster
spanned left inferior and superior parietal lobules, and the bilateral
precuneus. In addition, connectivity was found with the mid-cingulate
gyrus, bilateral fusiform gyrus, and bilateral ventral occipitotemporal
cortex roughly corresponding with area V5. This analysis was the
only one to identify striatal and cerebellar regions (see Table 1).
Specifically, RSFC connectivity was found with the bilateral thalamus
and the bilateral dorsal striatum. Cerebellar connectivity was more
pronounced in the right cerebellar hemisphere, with a large cluster
spanning lobules HVI and HVII (Crus I and II), and a smaller cluster
in lobule HVIII. In the left cerebellar hemisphere, smaller clusters
were present in lobules HVII (Crus I and II) and HVIII.

Meta-analytical connectivity mapping
MACM (Fig. 2B) provided the most restricted network of all three

connectivity mapping techniques examined, revealing a bilateral
network of fairly localized premotor and posterior parietal cortical
structures (see Table 2). Consistent task-based co-activation with the
left dPMC seed region was identified in the contralateral dPMC, and
bilateral vPMC, SMA, and IFG, extending into the anterior insula. Addi-
tional connectivity was found in localized clusters in the left ventral
occipitotemporal cortex, bilateral precuneus and intraparietal cortex,
alongwith smaller clusters in the right angular gyrus and superior parietal
lobule. The MACM analysis was unique in identifying connectivity with
the left anterior insula. The MACM analysis did not reveal connectivity
with subcortical regions.
013) identified this seed as a key area formotor learning. The seed regionwas the sole area
.
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Fig. 2.Results of the connectivity analyses. (A) The resting state analysis (red) revealed the largest functional connectivity network, including frontal-premotor, andparietal cortex, aswell as the
thalamus, putamen, and cerebellar regions. (B)Meta-analytical connectivity modelling (green) gave relatively focal results with a bilateral network of premotor and parietal cortical structures.
(C) The structural covariance analysis (blue) identified a large functional connectivity network, with widespread clusters, predominantly in prefrontal and motor/premotor areas.

t1:1 Table 1
t1:2 Resting state functional connectivity.

t1:3 # Vol (mm3) Macro Cyto t-score MNI Coordinates

t1:4 X Y Z

t1:5 1 172,308 L dPMC 56.21 -26 4 60
t1:6 R dPMC 27.62 26 8 56
t1:7 L SMA 14.91 −4 22 42
t1:8 L vPMC Area 44 12.82 −46 6 30
t1:9 L inferior frontal gyrus (p. triangularis) Area 45 12.54 −48 36 18
t1:10 L putamen 7.45 −16 8 4
t1:11 L thalamus Th-Temporal 7.37 −6 −14 12
t1:12 R thalamus Th-Temporal 7.15 8 −20 12
t1:13 R vPMC Area 44 5.96 50 6 26
t1:14 2 151,208 L precuneus SPL (7A) 18.68 −6 −64 54
t1:15 L inferior parietal lobule hIP2 16.92 −52 −42 48
t1:16 L precuneus SPL (7P) 16.50 −8 −72 54
t1:17 R precuneus SPL (7P) 16.29 8 −70 52
t1:18 L inferior parietal lobule IPC (PF) 15.53 −52 −34 44
t1:19 L inferior parietal lobule hIP2 15.46 −38 −48 50
t1:20 L inferior parietal lobule hIP1 15.25 −36 −48 48
t1:21 L superior parietal lobule SPL (7P) 14.74 −16 −74 54
t1:22 3 24,072 R cerebellum Lobule VIIa Crus I (Hem) 12.31 36 −64 −32
t1:23 R cerebellum Lobule VI (Hem) 11.71 30 −62 −32
t1:24 R cerebellum Lobule VIIa Crus II (Hem) 8.78 38 −68 −52
t1:25 R cerebellum Lobule VIIb (Hem) 8.69 30 −70 −50
t1:26 4 12,071 L inferior temporal gyrus 14.95 −58 −58 −14
t1:27 5 4,405 R inferior temporal gyrus 7.58 64 −58 -12
t1:28 6 4,205 R cerebellum Lobule IX (Hem) 9.67 14 −52 −48
t1:29 R cerebellum Lobule VIIIb (Hem) 4.60 12 −62 −62
t1:30 7 4,063 L cerebellum Lobule VIIa Crus I (Hem) 7.51 −32 −62 −34
t1:31 L cerebellum Lobule VIIa Crus II (Hem) 3.24 −48 −48 −50
t1:32 8 3,529 L fusiform gyrus 9.51 −34 −38 −18
t1:33 9 2,013 L cerebellum Lobule IX (Hem) 7.99 −12 −52 -50
t1:34 10 1,977 R fusiform gyrus 6.04 34 -34 -20
t1:35 11 1,315 L cerebellum Lobule VIIa Crus II (Hem) 5.75 -38 -70 -54
t1:36 L cerebellum Lobule VIIb (Hem) 3.22 -24 -72 -52
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t2:1 Table 2
t2:2 Meta-analytical connectivity modelling.

t2:3 # Vol
(mm3)

Macro Cyto z-score MNI Coordinates

t2:4 X Y Z

t2:5 1 22,522 L dPMC 8.57 −26 4 60
t2:6 L SMA Area 6 7.89 −2 12 54
t2:7 R SMA 7.51 6 22 46
t2:8 2 12,497 L inferior parietal lobule hIP3 7.30 −30 −56 48
t2:9 L precuneus SPL (7P) 5.57 −12 −72 48
t2:10 L inferior parietal lobule hIP2 4.26 −46 −36 44
t2:11 L inferior parietal lobule Area 2 4.25 −44 −34 44
t2:12 L inferior parietal lobule hIP1 3.56 −38 −44 44
t2:13 3 12,293 L vPMC Area 44 6.27 −52 10 32
t2:14 L inferior frontal gyrus
t2:15 (p. triangularis)

5.26 −44 32 20

t2:16 L inferior frontal gyrus
t2:17 (p. triangularis)

Area 45 4.80 −46 28 28

t2:18 4 6,813 R angular gyrus 6.41 34 −62 44
t2:19 R middle occipital gyrus 5.51 32 −76 34
t2:20 R superior parietal lobule SPL (7P) 4.56 16 −68 52
t2:21 R precuneus SPL (7A) 4.16 8 −60 50
t2:22 5 6,307 L insula lobe 6.95 −34 22 −4
t2:23 L inferior frontal gyrus
t2:24 (p. triangularis)

Area 44 4.03 −48 16 4

t2:25 6 5,707 R dPMC 6.03 28 2 54
t2:26 7 4,101 R vPMC 4.99 48 14 30
t2:27 8 3,025 Right inferior frontal gyrus

(p. orbitalis)
5.29 34 24 −10

t2:28 9 1,745 Right inferior parietal
lobule

hIP2 4.56 42 −42 44

t2:29 Right inferior parietal
lobule

IPC (PF) 3.75 48 −40 48

t2:30 Right inferior parietal
lobule

IPC (PFt) 3.67 50 −38 50

t2:31 10 1,739 Left inferior temporal gyrus 5.43 −48 −62 −10

t3:1

t3:2

t3:3

t3:4

t3:5

t3:6

t3:7

t3:8

t3:9

t3:10

t3:11

t3:12

t3:13

t3:14

t3:15

t3:16

t3:17

t3:18

t3:19

t3:20

t3:21

t3:22

t3:23

t3:24

6 R.M. Hardwick et al. / NeuroImage xxx (2015) xxx–xxx
E
C

Structural covariance
The SC analysis (Fig. 2C) revealed areaswhere the greymatter volume

correlates with the greymatter volume in the left dPMC seed region. This
analysis yielded large areas spanning most of the frontal lobe, from the
primary motor cortex to the orbitofrontal cortex. Smaller clusters were
identified in the temporal and parietal lobes (see Table 3). The pattern
was largely bilateral but stronger on the left, consistent with a left-
lateralized seed. Frontal significant grey matter correlations were found
U
N
C
O

R
R

Table 3
Structural covariance connectivity.

# Vol
(mm3)

Macro

1 162,399 L dPMC
R dPMC
R dPMC
L SMA
R inferior frontal gyrus (p.
triangularis)
L inferior frontal gyrus (p. opercularis)
R middle cingulate

2 10,584 R cuneus
L cuneus
L superior occipital gyrus

L cuneus
L cuneus

3 4,569 L superior temporal gyrus
L superior temporal gyrus
L superior temporal gyrus
L middle temporal gyrus

4 1,190 R S1
R S1

5 1,000 R superior occipital gyrus
R middle occipital gyrus

Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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bilaterally with the dPMC, IFG, SMA, and primary sensory and motor
cortex. Unique to the SC analysis, connectivity was also identified with
the mid-cingulate cortex, left middle temporal gyrus, right temporal
pole, bilateral cuneus, and occipital gyrus. Notably, no clusters were
identified in the parietal cortex, or in any subcortical regions.
 P
R
O

O
F

Difference analyses

Resting state functional connectivity N (meta-analytic connectivitymodelling
and structural covariance)

Consistentwith the very robust pattern of activation revealed by the
RSFC analysis, the pattern of regions more strongly associated with this
analysis (Fig. 3A) is very similar to that identified in the main analysis
(Fig. 2A). The clusters most strongly associated with RSFC spanned
bilateral premotor and supplementary motor regions stretching into
the dorsolateral prefrontal cortex and anterior insula, as well as large
areas of bilateral precuneus, superior and inferior parietal lobules,
fusiform gyrus, and ventral occipitotemporal cortex. As the cluster
in the left thalamus, bilateral putamen, and bilateral cerebellar regions
were only identified as having connectivity with the seed by the
RSFC analysis, the same pattern of subcortical activity were evidently
more strongly associated with RSFC than the other techniques
examined. Thus, most regions identified by the RSFC analysis, were
more strongly identified with this method than with either the
structural covariancemodelling ormeta-analytic connectivitymodelling
methods.
E
DMeta-analytic connectivity modelling N (resting state functional connectivity

and structural covariance)
Areas inwhichMACMwas stronger thanRSFC and SCwere relatively

small in volume. These areas included the bilateral anterior insula, left
dPMC (slightly dorsal from the seed region) and right vPMC, as well as
small clusters in the left inferior occipital gyrus and the superior parietal
lobule (see Fig. 3B). Of these regions, the right ventral prefrontal cortex
and right anterior cingulate cortex were solely identified in the MACM
analysis. In the parietal and occipital brain areas, RSFC and MACM
overlapped substantially, but small clusters were more strongly present
in the MACM.
Cyto t-score MNI Coordinates

X Y Z

3.54 −47 9 32
3.52 27 2 61

Area 6 3.35 24 −12 63
Area 6 3.29 −1 −3 67

3.24 48 36 27

3.21 −43 21 33
3.16 3 −9 35

Area 18 2.29 6 −79 21
2.11 3 −78 30

SPL
(7P)

1.91 −9 −81 41

Area 17 1.90 −3 −84 17
Area 18 1.90 −1 −81 18

2.05 −57 −28 8
OP 4 2.00 −60 −19 6
TE 3 1.98 −61 −31 13

1.94 −66 −42 8
Area 3b 1.75 30 −37 57
Area 2 1.73 30 −42 57

1.69 25 −88 27
1.68 30 −87 24

f motor learning-related dorsal premotor cortex, NeuroImage (2015),

http://dx.doi.org/10.1016/j.neuroimage.2015.08.024


T
E
D
 P

R
O

O
F

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

Greater Resting State Functional Connectivity

L R Y=-20Y=8 Y=-65

Greater Meta Analytic Connectivity Modeling

L R Y=-20Y=8 Y=-65

Greater Structural Covariance

L R Y=-20 Y=-65

A

C

B

Fig. 3.Difference analyses presenting regionswhere one of the connectivity analyses provided significantly stronger scores than its counterparts. (A) Resultsweremore strongly associatedwith
RSFC, shown with red clusters. (B) Results were more strongly associated with MACM, shown with green clusters. (C) Results more strongly associated with SC, shown with blue clusters.
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Structural covariance N (resting state functional connectivity and
meta-analytic connectivity modelling)

Structural covariance yielded the strongest connectivity measures
bilaterally across large areas of the frontal lobe and medial wall (see
Fig. 3C). In the majority of these areas, there was a correlation of the
grey matter volume between the dPMC seed and the grey matter
volume in these regions, while the other two methods did not reveal
significant connectivity with dPMC. Particularly striking are the robust
bilateral clusters in the primary motor cortex, as well as the spread of
the prefrontal cluster, which extended into the bilateral orbitofrontal
gyrus and right frontal and temporal pole (see Fig. 3B). In addition,
smaller clusters were found in the left superior temporal gyrus, left
precuneus, and bilateral cuneus.

Conjunction analyses

Several conjunction analyses were carried out to shed light on
regions commonly identified by the different connectivity analyses.
The areas commonly identified in the RSFC and MACM analyses were
fairly localized bilateral clusters in frontal and parietal lobes, with larger
clusters ipsilateral to the left dPMC seed region (see Fig. 4A). These
clusters were present in the right dorsal and ventral premotor cortex,
supplementary motor cortex, and the left ventral premotor cortex
extending into the dorsolateral prefrontal cortex and inferior frontal
gyrus. Bilateral parietal clusters were present in the intraparietal sulcus
and superior parietal lobule. The conjunction of analyses based on the
Rockland sample (i.e. RSFC and SC analyses) revealed a widespread
network spanning bilateral prefrontal and motor cortex, along with a
fewmuch smaller clusters in the superior parietal lobule and precuneus
(see Fig. 4B). Only a small number of regionswere commonly identified
by SC and MACM analyses; these were in the left vPMC, SMA, and right
dPMC (see Fig. 4C). Finally, the combined conjunction of all three
connectivity analyses (i.e. RSFC, MACM, and SC; see Fig. 4D) was very
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
http://dx.doi.org/10.1016/j.neuroimage.2015.08.024
similar to the conjunction of the MACM and SC analyses. Specifically,
these areas were the left vPMC, right dPMC, and the SMA.

Volume quantification

We quantified the volumes identified in each analysis to further
investigate the differences and similarities between RSFC, MACM, and
SC. We first quantified the total volumes identified by the RSFC,
MACM, and SC analyses (Fig. 5A). RSFC identified the largest overall
volume with functional connectivity with the seed (381,166 mm3).
The RSFC network was more than double the size of the SC network
(179,839 mm3), while the SC network was in turn more than double
the size of the MACM network (76,749 mm3).

We then compared the convergence and divergence of the networks
as examined in the conjunction analyses. Overlaying the RSFC and
MACM networks (Fig. 5B) revealed that 81% were unique to the RSFC
analysis, while only 3%was unique to theMACManalysis. The remaining
16% of the overall volume was identified as surviving the conjunction of
RSFC and MACM. Due to the disparity of their sizes, this meant that the
majority of the volume identified in the MACM analysis was also identi-
fied by the RSFC analysis (see Venn diagram illustrating overlap; Fig. 5B).
Pairwise comparisons indicated that 17% of the volume identified by
RSFC analysis survived conjunction with the MACM map (see Fig. 5F),
while 83% of the MACM map survived conjunction with the RSFC map
(see Fig. 5G). Overlaying the RSFC and SC networks (Fig. 5C) revealed
that 64% of the total volume identified was unique to RSFC, while 24%
was unique to SC. Thus, 12% of the total volume identified in both anal-
yses was shown to be commonly found in both techniques. Pairwise
comparisons of these maps revealed that 16% of the RSFC map survived
conjunction with the SC map (see Fig. 5H), while 34% of the SC map
survived conjunction with the RSFC map (see Fig. 5I). Overlaying the
MACM and SC networks (Fig. 5D) showed that 67% of the total network
was unique to the SC analysis, while 23% was unique to the MACM
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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Fig. 4. Results of the conjunction analyses. (A) Conjunction of the RSFC andMACM analyses. (B) Conjunction of the RSFC and SC analyses. (C) Conjunction of the MACM and SC analyses.
(D) A combined conjunction from all three analyses (RSFC, MACM, and SC), identifying a consistent ‘core’ network common to all connectivity mapping techniques considered.
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Ranalysis, and 10% was commonly identified in both maps. Pairwise
comparisons showed that 29% of the MACM map survived conjunction
with the SCmap (see Fig. 5J), while 12% of the SC map survived conjunc-
tion with the MACMmap 2(see Fig. 5K).

Finally, we considered the divergence and convergence between the
RSFC, MACM, and SC maps in a combined analysis, overlaying all three
functional connectivity maps. The majority of the volume identified by
all three mapping techniques was unique to RSFC (54%) or the SC
analysis (23%). A relatively small volume was identified only by
MACM (2%). Conjunctions indicated that similar overall volumes
were identified by both RSFC and MACM but not SC (8%), or RSFC
and SC but not MACM (9%). In comparison, the volume identified
by both MACM and SC but not RSFC was extremely small (1%).
Considered relative to the total volume identified by all three analyses,
only a small volume was identified in the combined conjunction of the
RSFC, MACM, and SC analyses (4%; Fig. 6).
546

547

548

549

550

551

552
Volume-matched analyses

Results of the volume-matched control analysis were similar to those
of the main analyses: RS and MACM identified relatively consistent
networks of frontal, premotor, and parietal regions. In comparison, SC
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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revealed a network of areas more local to the seed, consisting mainly of
prefrontal and premotor regions.
Volume-matched analyses: volume comparisons

Volume-matched analyses controlled for potential differences in the
maps identified by each network arising from differences in the sizes of
the volumes they identified. The volume-matched analysis iteratively
increased the threshold of the RS and SC maps, reducing their volumes
until they were approximately equal to that of the MACM analysis (see
Fig. 7A). Overlaying the maps identified by the RSFC andMACM analyses
showed that 24% of this volumewas common to both analyses. A total of
39% of the volume of the volume-matched RSFC map survived conjunc-
tion with the MACMmap, and (due to the volume matching approach),
39% of the MACM map survived conjunction with the RSFC map (see
Fig. 7F,G). Overlaying the volume-matched RSFC analysis with the
volume-matched SC analysis identified an 8% overlap (Fig. 7C). Of the
volume-matched RSFC map, 15% survived conjunction with the volume-
matched SC map, and vice versa (Fig. 7H,I). Overlaying the MACM map
on the volume-matched SC map identified that 10% of the maps
overlapped (Fig. 7D). For the MACM map, 18% survived conjunction
with the volume-matched SCmap, and vice versa (Fig. 7J,K). A combined
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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Uoverlay analysis of all threemaps also identified that the volume-matched
SC analysis had the least overlapwith other networks, consistentwith the
main analysis (Fig. 7E).

Discussion

The dPMC plays an essential role in integrating sensory and motor
information (Roland et al., 1980; Weinrich and Wise, 1982), and the
left dPMC in particular is consistently activated during a wide range of
motor learning tasks (Hardwick et al., 2013). Despite the importance
of the dPMC for sensorimotor integration and motor learning, there is
limited understanding of the areas that functionally interact with it.
The present study therefore examined regions that have functional
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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connectivity with a left dPMC region key to motor learning (Hardwick
et al., 2013). We employed resting state functional connectivity (RSFC),
meta-analytic connectivity mapping (MACM), and structural covariance
(SC), comparing and combining their results to provide a comprehensive
overviewof connectivitywith the seed. Themaps resulting from theRSFC,
MACM, and SC analyses identified networks of varying size and
topography. Notably, the maps from the RSFC and MACM analyses
were qualitatively similar, primarily spanning premotor and parietal
regions. In comparison, the SC map identified predominantly frontal
and temporal regions.

The differences between the maps for RSFC, MACM, and SC may
be attributed to the methodological approaches employed by the
three techniques. RSFC networks are based on “spontaneous”, task-free
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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fluctuations in the BOLD signal, whileMACM is based on the convergence
of peak co-activity between task-based fMRI and PET experiments. Thus,
the signals from RSFC and MACM are similar in that they both primarily
encapsulate short term blood utilization in brain tissue. Note, however,
that the RSFC analysis used only data from fMRI,while theMACManalysis
amalgamated data fromboth fMRI and PET; these differentmodalities are
known to influence activation profiles (Veltman et al., 2000), which could
contribute to the differences seen between the RSFC andMACM analyses.
In comparison, SC identifies correlations in grey matter volume between
brain regions, and as such has less in common with RSFC and MACM. In
addition, RSFC and MACM relate to comparatively short time spans,
considering functional connectivity at rest (RSFC) or during the perfor-
mance of specific tasks (MACM). The time span for SC is much longer,
assessing differences in grey matter volume that have arisen throughout
life thus far. An additional consideration is that the present study aimed
to gain a comprehensive overview of functional connectivity with the
dPMC seed region by examining typical applications of RSFC,
MACM, and SC. As such, there are methodological differences
between implementations, as is the case when each technique is used
individually in the present literature. While it could be argued that stan-
dardizing these approachesmay have reduced between-technique noise,
such an approachwould lead to questionablemethodological choices; for
instance, it is not feasible to assess VBMdata (as used in SC) using cluster-
level inference, which is standard in RSFC and MACM. Furthermore,
attempting to rigidly match these procedures may artificially promote
the homogeneity of the results. The present approach therefore allows
further generalization of the results, allowing comparison of each
individual analysis with those presently found in the literature.

A further consideration is that noneof these techniques can perfectly
capture functional connectivity, as each is subject to different sources of
inherent noise. The spontaneous BOLD signal from which RSFC is
derived is thought to be particularly susceptible to artefacts from
preprocessing and physiological noise (Chang and Glover, 2009;
Power et al., 2012). MACM is derived from peak coordinates from
task-based fMRI and PET studies, and is thus constrained by the tasks
possible to be performed in the scanner and the inherent spatial
uncertainty of neuroimaging results (Eickhoff et al., 2009; Rottschy
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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E
Det al., 2012). Finally, aswell as representing experiences such as repeated

practice of motor tasks (e.g. Gaser and Schlaug, 2003), differences in
brain structure detected by SC are influenced by both environmental
and hereditary factors throughout development (Alexander-Bloch
et al., 2013).

To date, relatively few studies have compared results from all three
of these techniques; most have compared RSFC with either MACM or
SC (Bzdok et al., 2013; Jakobs et al., 2012; Rottschy et al., 2013; Segall
et al., 2012). These investigations have generally reported that the two
techniques they have examined provide qualitatively similar results.
Here, we extended this work by quantifying the volumes identified by
each analysis and their conjunctions, which further illustrated the
relative similarities between the RSFC and MACM networks in compar-
ison to the results of the SC analysis. Notably, RSFC andMACM are well-
establishedmethods formapping functional connectivity (Biswal, 2012;
Robinson et al., 2010), while the degree to which anatomical covariance
networks as identified by SC are representative of functional connectivity
is debatable (Clos et al., 2014). As a result, we first discuss the common
functional connectivity network as identified by RSFC and MACM, then
consider the added benefit and potential problems to consider when
comparing their results to SC.

Areas with consistent functional connectivity: networks for motor learning
identified by RSFC and MACM

As noted above, visualization of connectivity maps and volume
quantifications indicated considerable convergence between the RSFC
andMACMmaps. The conjunction of these maps identified a consistent
network of brain regions with functional connectivity to the motor
learning–related seed region, including the right dPMC, bilateral ventral
premotor cortex (vPMC), bilateral supplementary motor area (SMA),
left dorsolateral prefrontal cortex (DLPFC), bilateral posterior parietal
cortex, and left a V5/MT. This network is consistent with the role of
the left dPMC as a central hub for sensorimotor integration and motor
learning.

Interhemispheric dPMC interactions are well documented in motor
control. Simple unilateral movements are typically associated with
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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et al., 2003; Tanji et al., 1988) and humans (Ward and Frackowiak,
2003). The left dPMC is dominant in action selection (Bestmann et al.,
2008), though the right dPMC can assume this role if the left dPMC is
compromised (O’Shea et al., 2007). Studies of sequence learning have
also identified increased right dPMCactivity for the perceptual elements
of sequences (Schubotz and von Cramon, 2002a, 2002b). The dPMC
therefore appears to play a key role in volitionalmovement preparation,
with the left dPMC being dominant for action selection and initiation,
and the right dPMC playing a supportive role in acquisition and retrieval.
Bihemispheric recruitment of the vPMC is also frequently observed in
motor control (Binkofski et al., 1999; Davare et al., 2006; Ehrsson et al.,
2000, 2001). The vPMC is specifically involved in the sensory guidance
of hand movement (Binkofski et al., 1999), especially in hand shaping
for precision grasp (Davare et al., 2006).

The SMA and left dPMC were also not only identified as having
consistent connectivity across the RSFC, MACM, and SC analyses here
but were also consistently linked with activation duringmotor learning
in our previous meta-analysis (Hardwick et al., 2013). Moreover,
consecutive days of motor training lead to parallel increases in their
grey matter volumes (Hamzei et al., 2012). As both are active in motor
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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learning tasks that control for simple motor activity (Hardwick et al.,
2013), they therefore appear to play a role in motor learning beyond
movement execution itself. Both have been linked with movement
sequences; the SMA being more closely associated with those that
have been learned extensively (Wymbs and Grafton, 2013). The SMA
has also classically been linked with the self-initiation of voluntary
movements (Deecke and Kornhuber, 1978; Hoffstaedter et al., 2013b)
and in switching between ongoing movement tasks (Nachev et al.,
2008; Obeso et al., 2013). Increases in pre-SMA activity have frequently
been associated with successful response inhibition (see Obeso et al.,
2013; but also Criaud and Boulinguez, 2013). The SMA therefore likely
interacts with the dPMC in order to store movement sequences, and
to initiate, modify, and possibly inhibit (or coordinate the inhibition
of) actions.

Lesion studies in non-human primates indicate that the DLPFC plays
an important role in rule-driven action selection (Wise and Murray,
2000). Similarly, in humans, the DLPFC is associated with a role for
rule representation within the working memory network (Nee et al.,
2013). The DLPFC may therefore contribute to motor learning through
providing declarative knowledge to be applied to motor output.
Interestingly, interferingwith the normal function of the DLPFC through
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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theta burst stimulation or cathodal transcranial direct current stimulation
reduces declarative knowledge, but improves motor performance,
presumably through placing an increased emphasis on implicit aspects
of performance (Galea et al., 2010; Zhu et al., 2015). The DLPFC could
therefore interact with the dPMC by providing declarative knowledge
and relevant rules to guide motor output (see Wise and Murray, 2000).

The posterior parietal cortex receives multisensory inputs (see
Grefkes and Fink, 2005), and is involved in weighting their evidence in
order to produce appropriatemotor output (Block et al., 2013). Notably,
the regions demonstrating parietal connectivity in the conjunction of
the RSFC and MACM maps included the superior parietal lobule (SPL),
which was also found to be commonly activated in our recent
meta-analysis of 70 motor learning experiments (Hardwick et al.,
2013; see supplementary methods for comparison). The SPL has
known physiological connectivity with the primate dPMC (Matelli et al.,
1998), and their interaction is important for visuomotor control (Wise
et al., 1997). Thus, multisensory input from the parietal lobe is thought
to be processed to become motor output via an SPL-dPMC pathway
(Cieslik et al., 2011; Johnson et al., 1993, 1996).

The inferior temporal cortex (ITC) is considered to be part of the
ventral visual stream (Gross, 2008). ITC neurons respond only to visual
stimuli (Gross et al., 1967, 1972), and are specialized for the recognition
of shapes regardless of size, color, contrast, or location within the visual
field (Schwartz et al., 1983; Rolls and Baylis, 1986). In humans, lesions of
ITC lead to visual agnosia, characterized by an inability to recognize
visual stimuli (Bauer, 2006). Association of a ventral stream area with
motor control may seem surprising, as the dorsal visual stream is classi-
cally associated with movement (Goodale and Milner, 1992). However,
functional connectivity with a region specialized in shape recognition is
consistent with the essential role of the dPMC plays in producingmotor
responses to arbitrary visual stimuli (Wise and Murray, 2000).

Notable for a network involving motor control, the primary motor
cortex (M1) was not identified as being functionally connected with
the seed in the combined RSFC and MACM conjunction. M1 was also
absent in the liberal analysis that removed thresholding from the
MACM network (see supplementary results). This may seem surprising
as there are known physiological connections between dPMC and M1
shown (Dum and Strick, 2005) and as dPMC excitability can affect M1
excitability in humans (Davare et al., 2009). However, RSFC connectivity
does not always map onto anatomical connections (Di Martino et al.,
2008; Kelly et al., 2010; Uddin et al., 2008; Vincent et al., 2007), and a
previous study based on 1,000 subjects that parcellated the brain into
RSFC networks did not show functional connectivity between M1 and
premotor regions such as dPMC (Yeo et al., 2011). In addition, the
absence of M1 from the MACM analysis may in large part be explained
by the contrasts present in the BrainMap database. Most neuroimaging
studies include controls for simple motor execution (see, for example,
Daselaar et al., 2003; Inoue et al., 2000). Importantly, our previous
finding that such contrasts remove M1 activation but still show dPMC
activation (Hardwick et al., 2013) highlight the importance of the
dPMC in higher-order motor processing.

Connectivity with the cerebellum was present in the RSFC analysis.
In the right cerebellum, connectivity included regions associated with
the lower hand representation in lobule HVIII (Thickbroom et al., 2003;
Yeo et al., 2011), consistent with the importance of the cerebellum in
motor control (Hardwick et al., 2013, 2014). Bilateral connectivity was
also identified with lobules HVII (Crus I and II), which are involved in
cognitive and linguistic processes (Lesage et al., 2012; Stoodley and
Schmahmann, 2009), and are functionally connected to DLPFC and PPC
(Buckner et al., 2011; O’Reilly et al., 2010). Given the importance of the
cerebellum in motor control and learning, and the presence of cerebellar
clusters of connectivitywith the dPMC in theRSFC analysis, the absence of
cerebellar clusters in the MACM analysis is perhaps surprising (though
the MACM analysis did not identify the cerebellum as having functional
connectivity with the dPMC, further analysis did identify multiple sub-
threshold clusters of cerebellar connectivity; see supplementary results).
Please cite this article as: Hardwick, R.M., et al., Multimodal connectivity o
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This difference can likely be attributed to the focus that many functional
imaging studies place on imaging the cerebral cortex; the standard
normalization process conducted in neuroimaging studies is not
optimized for the cerebellum (Diedrichsen, 2006). Furthermore, inferior
portions of the cerebellum are sometimes not covered by the field of
view in many whole-brain fMRI studies, and when these regions are
acquired, the default bounding box for normalization in certain software
analysis packages do not include the entire cerebellum. This would lead
to the absence of and greater variability in cerebellar coordinates than
those in the cerebral cortex for many of the studies included in the
BrainMap database, and may explain why the MACM analysis detected
clusters in the cerebellum that did not survive thresholding.

Functional connectivity and structural covariance

As considered above, RSFC and MACM are previously established
methods for identifying functional connectivity with a seed region,
while the degree to which SC can determine functional connectivity is
currently a subject of ongoing debate (Clos et al., 2014). Notably,
while RSFC andMACM identified a similar network of frontal, premotor,
and parietal regions, SC identified a network of mainly frontal regions
that was more widespread than that revealed by the other two
methods. This is consistent with findings from graph-theoretical SC
analyses that report predominantly local connectivity (He et al.,
2007a), andwith data from seed-based SC analyses that identify regions
largely limited to the lobe inwhich the seed is defined (Clos et al., 2014;
Seeley et al., 2009; Zielinski et al., 2010). SC is thought to represent a
combination of developmental coordination or synchronized maturation
between brain areas (Alexander-Bloch et al., 2013). The SC network iden-
tified here is consistent with both of these properties; the prefrontal,
premotor, and motor regions identified by SC are highly interconnected
via anatomical fiber tracts (Bürgel et al., 1999, 2006; Carmichael and
Price, 1995; Dum and Strick, 2005), and develop concurrently (Giedd
et al., 1999).

The Rockland sample and the BrainMap database

The RSFC and SC analyses in the present study used whole-brain
neuroimaging data from the Rockland sample. As data from the same
subjects were used in both the RSFC and SC analyses, these analyses
are therefore matched for factors such as age and gender. In contrast,
the MACM analysis was based on data from the BrainMap database,
which reports stereotaxic peak activation coordinates from published
neuroimaging studies. Using peak coordinates leads to the loss of spatial
information, but provides a pragmatic solution to the problems associated
with sharing large datasets (current technical and practical limitations
prevent the storage ofwhole-brain data from the 10,000+neuroimaging
studies included in the BrainMap database). Moreover, in spite of begin-
ning data-sharing efforts, integrating published maxima coordinates are
currently the only approach that allows summarization of the entire
current literature. This loss of spatial information may account for the
relatively small size of the volume identified by the MACM analysis in
comparison to the RSFC and SC analyses. However, while these coordi-
nates present a relatively sparse representation of the original activation
maps they encapsulate, they also represent the most probable locations
of activity from the activation maps they encapsulate, and thus provide
a highly reliable source of data. Differences in sampling demographics
may also influence the connectivity maps identified by each technique.
The Rockland sample aims to produce a representative sample of individ-
ual subjects from the general population; in contrast, the BrainMap data-
base stores average information from groups of subjects, and the papers
fromwhich this information is drawn do not always report demographic
information in a uniform manner (e.g. some papers report mean subject
ages, some report only age ranges). Similarly, it may be expected that
the corpus of studies and contrast types contained within the BrainMap
database could influence the results it provides; for example, as most
f motor learning-related dorsal premotor cortex, NeuroImage (2015),
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studies require participants to visual stimuli (vs. other modalities), there
may be a bias toward finding activity in visual regions. However, sample
bias effects appear unlikely given the high level of consistency between
theMACMandRSFCmaps (the latter ofwhichbydefinition is not affected
by task demands). Furthermore, it is notable that this study and others
have identified similar results using RSFC and MACM (Bzdok et al.,
2013; Clos et al., 2014; Hoffstaedter et al., 2013a; Jakobs et al., 2012;
Müller et al., 2013; Rottschy et al., 2013). The consistency between results
from RSFC and MACM illustrate that harnessing the large and varied
sample from the BrainMap database can provide a powerful approach
to functional connectivity.

Conclusions

Here, we employed multiple connectivity modelling techniques to
identify areas functionally interactingwith a left dPMC region identified
as key for motor learning. RSFC, MACM, and SC offer different method-
ological and conceptual approaches to identifying functional connectivity
with a seed region, and were used here to provide a comprehensive
assessment of functional connectivity with the dPMC (cf. Clos et al.,
2014; Reid et al., 2015). Each approach identified networks with clear
differences in both their size and topography. However, further analyses
indicated that RSFC and MACM revealed a relatively consistent network
of prefrontal, premotor, and parietal regions, while the SCmap consisted
mainly of widespread frontal regions. All techniques identified a consis-
tent 'core' network of functional connectivity with the left vPMC, right
dPMC, and the SMA, all of which play important roles in the motor
control and learning (Hardwick et al., 2013). Most notably, conjunction
of the RSFC and MACM networks identified a consistent functional
network consisting of the bilateral dPMC, vPMC, SMA, and PPC, as well
as left hemisphere connectivity with the DLPFC and ITC. This network is
consistent with the established role of the dPMC in response selection,
suggesting that it supports motor learning by acting as an interface
between higher cognitive functions and visuomotor control.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.08.024.
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