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Structural equation modeling (SEM) was applied to positron emission
tomographic (PET) images acquired during transcranial magnetic
stimulation (TMS) of the primary motor cortex (Ml;,,4). TMS was
applied across a range of intensities, and responses both at the stimu-
lation site and remotely connected brain regions covaried with stimulus
intensity. Regions of interest (ROIs) were identified through an acti-
vation likelihood estimation (ALE) meta-analysis of TMS studies. That
these ROIs represented the network engaged by motor planning and
execution was confirmed by an ALE meta-analysis of finger movement
studies. Rather than postulate connections in the form of an a priori
model (confirmatory approach), effective connectivity models were de-
veloped using a model-generating strategy based on improving tenta-
tively specified models. This strategy exploited the experimentally
imposed causal relations: (1) that response variations were caused by
stimulation variations, (2) that stimulation was unidirectionally applied
to the M1},,,4 region, and (3) that remote effects must be caused, either
directly or indirectly, by the M1,,,,q4 excitation. The path model thus
derived exhibited an exceptional level of goodness (x*=22.150, df=38,
P=0.981, TLI=1.0). The regions and connections derived were in good
agreement with the known anatomy of the human and primate motor
system. The model-generating SEM strategy thus proved highly
effective and successfully identified a complex set of causal relationships
of motor connectivity.
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Introduction

Structural equation modeling (SEM) is a powerful, general-
purpose tool for statistical analysis and modeling of interactions
between observed and unobserved (latent) variables (Schumacker
and Lomax, 2004), with the typical goal of testing causal rela-
tionships among variables. In the field of brain imaging, SEM can
be used to model distributed neural systems composed of multiple
regions, with these regions being modeled as observed variables
and the neural pathways connecting them being modeled as causal
relationships (i.e., inter-regional covariances) (Mclntosh et al.,
1994; Mclntosh and Gonzales-Lima, 1994). Because covariance
analyses result in bidirectional paths, a substantial challenge for
SEM in neuroimaging is to reduce these to unidirectional paths.
The most common strategy is hypothesis-based, in which op-
tional paths are constrained with a priori information, typically
from anatomical or functional connectivity studies in human or non-
human species. However, it is often difficult to defend the as-
sumptions made when constructing these hypothesis-based models.
Moreover, the number and location of regions in the network needs
to be established such that critical nodes are not omitted, while at
the same time excluding regions of no relevance. This is critical
given that SEM procedures mandate a limited number of regions of
interest; thus, the selection of ROIs can be open to experimenter
bias. A further challenge is that once the regions are selected,
restrictions must be made on the paths connecting those regions.
Testing a model in which every region is bidirectionally connected
to every other region, known as the saturated model (Schumacher
and Lomax, 2004), is not a viable option unless the model contains
a very small number of regions. The goal of SEM in any context is
to achieve a parsimonious model (i.e., one with few path tracings),
yet one that also exhibits an increase in evaluating the adequacy
(e.g., goodness) of the model. It must be determined which
connections should be omitted in the saturated model, then if the
remaining connections are bidirectional or unidirectional.
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Recent studies have attempted to address these questions by
developing methods to constrain starting models prior to SEM (Patel
et al., 2006; Zheng and Rajapakse, 2006). The purpose of these
methods is to analyze the structure of the data in order to determine
strong relationships that can later be modeled using SEM in a
confirmatory approach. However, SEM theory provides an alternate
way of analyzing covariance structure between variables, one that
specifies tentative models that best fit the given data (Hershberger
et al., 2003). Exploratory SEM methods have been utilized in pre-
vious studies investigating bimanual coordination (Zhuang et al.,
2005), tactile shape perception (Peltier et al., 2007), and to some
extent, semantic decision-making with covert articulation (Bullmore
et al., 2000). These studies restricted their analyses to a very small
number of brain regions and/or imposed initial constraints on va-
rious possible paths. Here, the goal was to investigate the appli-
cability of exploratory structural equation modeling in positron
emission tomography (PET) data during transcranial magnetic sti-
mulation (TMS) with a large number of neural regions and no
assumed constraints of the initial model.

TMS has been used in conjunction with imaging methods such as
PET (Fox et al., 1997; Paus et al., 1997) and functional magnetic
resonance imaging (fMRI) (Bohning et al., 1997), as well as event-
related potentials (ERP) (Ilmoniemi et al., 1997). TMS can be
applied to a discrete cortical site and propagates orthodromically
from that site, resulting in detectable changes in cerebral blood flow
of the entire network of connected regions (Fox et al., 1997). This
basic principle can be applied to SEM to generate unidirectional
starting paths from which to model, which is the strategy used in this
study. This novel strategy is possible due to the ability to draw a
known starting path based on the given experimental design, an
exclusive property of applying SEM to TMS/PET data. By their
nature, functional imaging tasks in which activations are derived
from various perceptual, motor, or cognitive events do not fall into
this same category of design. In these tasks, the entire neural network
is activated as a whole and the starting point of stimulation of the
network can only be derived hypothetically. Thus, TMS is unique
since a discrete cortical area of interest is directly stimulated and the
delivered signal propagates throughout the connected network of
interest.

In this study, path analysis, a form of SEM involving only ob-
served variables, was used to model the connectivity of the TMS-
stimulated hand region of the left primary motor cortex (LMl ,,q) in
seven subjects. To reduce bias and minimize assumptions, regions in
the LMI},.,q TMS network of these subjects were restricted to those
identified with activation likelihood estimation (ALE) meta-analysis
of the TMS literature (Turkeltaub et al., 2002; Laird et al., 2005a).
For each subject, TMS was delivered in a graded manner, resulting
in graded responses both at the stimulation site and beyond. Thus,
parametric intensity stimulation of the LMIy,,q site occurred,
ranging from above to below subjects’ individual motor thresholds.
This experimental design allowed for an SEM analysis that included:
(1) the stimuli itself as a quantitative variable and (2) a known
starting point for exploratory modeling of the system as a whole.

Methods
Subjects
Seven healthy, right-handed volunteers were included in this study

(4 women, 3 men; mean age=35 years; standard deviation=
11.34 years; age range=22-43 years). All subjects gave their written,

informed consent in accordance with the Declaration of Helsinki and
with approval from the Institutional Review Board and Radiation
Safety Committee of the University of Texas Health Science Center at
San Antonio. All subjects were healthy (no medical, neurological, or
psychiatric illnesses) and taking no medications. The use of TMS at
3 Hz was approved by the United States Food and Drug Admi-
nistration (IDE K905059D, held by Peter Fox). The data acquired in
these 7 subjects were used in prior publications (Fox et al., 2004,
2006), and consisted of subjects representing the group of “cortical
responders.” This designation indicated that significant PET activa-
tion during TMS was observed in these subjects. Four other subjects
were omitted from the present analysis, as no significant PET acti-
vation was observed in this data, despite the presence of physiological
evidence of stimulation.

TMS/PET procedures

TMS was delivered at 3 Hz via a robotic, image-guided system
(Lancaster et al., 2004) to LMI;,,,q. TMS was delivered with a water-
cooled, B-shaped coil (Cadwell, Kennewick, WA). The coil was
powered by a Cadwell HSMS unit, which delivers a tri-phasic
electric pulse with a total duration of 240 ps and a peak E-field of
435 V/m at the coil surface at 100% of machine output. Motor
thresholds were determined prior to imaging as described in Fox
etal. (1997). During PET, each subject underwent two trials of TMS
at 3 intensities relative to motor threshold (75% MT, 100% MT, and
125% MT), delivered in a pseudo-randomized order (6 stimulated
scans per subject). TMS commenced 120 s prior to tracer injection
and continued through the first 40 s of a 90-s image acquisition. In
addition, subjects were also imaged during two trials of rest (0%
MT).

PET image acquisition was performed using a General Electric
(Milwaukee, WI) 4096 whole-body camera (pixel spacing=2 mm,
spatial resolution=6.5 mm FWHM in the axial plane, inter-plane
center-to-center distance=6.5 mm, scan planes=15, z-axis FOV=
10 cm). Brain blood flow was measured using Hés O, administered as
an intravenous bolus of 8-10 ml saline containing 5070 mCi per
injection, tailored to obtain satisfactory coincidence detection rates.
Ninety seconds of data were acquired, triggered by the tracer entering
the brain. Throughout the PET session, the subjects’ heads were
immobilized with an individually fitted, thermoplastic facial mask
(Fox and Raichle, 1984). To minimize auditory activation due to the
sound emitted by the TMS, foam earplugs were worn throughout the
imaging study. Electromyographic (EMG) recordings were monitored
throughout the period of TMS delivery to ensure effective stimulus
delivery. Anatomical MRI was acquired in each subject and used to
optimize spatial normalization. MR imaging was performedona 1.9 T
GE/Elscint Prestige (Haifa, Israel) at a voxel size of 1 mm?>.

Image pre-processing

Images were reconstructed into 60 slices (2 mm thickness), with an
image matrix size of 60x128x 128, using a 5 mm Hanning filter
resulting in images with a spatial resolution of approximately 7 mm
(FWHM). PET images were value-normalized to a whole-brain mean
0f 1000. PET and MRI data were co-registered using the Convex Hull
algorithm (Lancaster et al., 1999). MRI data were spatially normalized
in series using both the Spatial Normalization (SN) (Lancaster et al.,
1995) and Octree SN (OSN) algorithms (Kochunov et al., 1999). The
SN algorithm performed “global” (nine-parameter) spatial normal-
ization, which registered each subject to the target shape provided by
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Table 1
Input data for ALE meta-analysis of LMI},,q TMS studies

Author N  Contrast Intensity Frequency Modality
(% MT) (Hz)

Bestmann 12 Suprathreshold 110% 3.125 3 T MRI
rTMS — Rest

Bestmann 12 Subthreshold  90% 3.125 3 T MRI
rTMS — Rest

Denslow 11 TMS vs. Rest, 110% 1.0 1.5 T MRI
Increases

Siebner, 1999 12 rTMS vs. Rest 140% 2.0 '"FDG PET

Siebner, 2000 8 Post-rTMS vs. “just below” 5.0 8EDG PET
Rest 100%

Speer 10 Positive 80%—120% 1.0 H}’0 PET
correlations

5 papers with 6 contrasts and 53 foci were included in the TMS meta-
analysis (listed in alphabetical order by first author).

n=number of subjects included in a given study; Intensity (% MT)=
intensity at which TMS was delivered relative to each individual’s relative
percent of motor threshold.

the Talairach and Tournoux (1988) atlas. The OSN algorithm per-
formed “local” spatial normalization, in which each subject’s brain
was anatomically deformed to match the median of the group in a
high-resolution (1 mm?), fully 3D manner. OSN processing was used
to optimize registration of anatomical features (and thereby functional
areas) across subjects. OSN-derived deformation fields were applied
to the PET data prior to computation of statistical parametric images
(SPIs).

ALE meta-analysis

An aim of this study was to develop more standardized, less user-
dependent methods of ROI selection prior to SEM analyses. As an
alternative to the highly variable methods currently observed in the
neuroimaging literature, the ROI selection procedure was guided by
a quantitative, voxel-based meta-analysis of TMS studies.

LMI,,,,,.. TMS literature search

A PubMed literature search was carried out to identify all studies
published prior to June 2006 in which repetitive TMS (rTMS) was
used to stimulate the left primary motor cortex during fMRI or PET
(H>0 or 'SFDG) imaging. The search results were filtered to eli-
minate studies that lacked whole-brain results in the form of ste-
reotactic (x, y, z) coordinates, which did not apply TMS concurrently
with tracer uptake (PET) or with imaging (fMRI), and which had
fewer than five subjects. Studies were also excluded if they reported
only individual subject data, data from non-normal subjects, or de-
creases in signal due to TMS. This filtering of the PubMed search
results yielded 6 contrasts and 53 foci from 5 rTMS papers in which
LMl ang Was stimulated (Bestmann et al., 2004; Denslow et al.,
2005; Siebner et al., 1999, 2000; Speer et al., 2003). This final set of
5 papers varied by the intensity and frequency of TMS and the data
analysis procedures (Table 1). Image acquisition and TMS were
simultaneous in three studies (Bestmann et al., 2004; Denslow et al.,
2005; Speer et al., 2003). This was not the case for two PET studies
(Siebner et al., 1999, 2000), but they were not excluded since TMS
was simultaneous with uptake of the tracer. Generally, meta-analytic
procedure dictates that ROI analyses be excluded; however, in the
case of LMIy,,,g TMS studies, this limitation would restrict the total
pool of studies to only two (Bestmann et al., 2004; Denslow et al.,

2005). Thus, a heterogeneous mixture of whole-brain analyses
(Bestmann et al., 2004; Denslow et al., 2005), ROI analyses (Siebner
etal., 1999, 2000), and correlation analyses (Speer et al., 2003) were
included in the meta-analysis.

Voluntary movement literature search

To compare the LMI,,q TMS meta-analysis network to the
network for overt, voluntary hand movement, an ALE meta-
analysis of finger tapping studies was performed. PubMed was
searched for all studies in which right-handed finger tapping of
simple sequences was imaged using fMRI or PET. Again, the pool
of studies was restricted to include only those studies that pub-
lished their results in the form of stereotactic (x, y, z) coordinates.
Studies were additionally excluded in the usual fashion if they
reported only individual subject data, data from non-normal sub-
jects, deactivations, or ROI analyses. In contrast to the TMS meta-
analysis, this last restriction was made possible by the fact that the
finger tapping task has frequently been employed in functional
neuroimaging, thus yielding an extremely rich body of literature.
Contrasts were isolated in which right-handed subjects performed
simple tapping of either all of the fingers on the right hand, or the
index or ring finger alone, was compared to rest (i.e., Tapping vs.
Rest). The literature search and resultant filtering yielded 16
papers, 20 contrasts, and 204 foci (Table 2).

ALE meta-analysis procedure

ALE was performed in the BrainMap environment (Fox and
Lancaster, 2002; Laird et al., 2005b). Upon insertion into the
database, foci flagged as belonging to MNI space were automati-
cally converted to Talairach space using the icbm2tal algorithm
(Lancaster et al., 2007), which has shown to provide improved fit
over the mni2tal transform (Brett, 1999). Each included foci was

Table 2
Input data for ALE meta-analysis of finger tapping studies
Author n  Contrast Modality
Aoki 10 Index finger — Rest PET
Aoki 10 Ring finger — Rest PET
Aoki 10 Double finger tapping — Rest PET
Blinkenberg 8 Finger tapping vs. Rest PET
Calautti 7 Right-hand tapping vs. Rest, young adults PET
Catalan 13 Sequence 16 vs. Rest, controls PET
Denslow 11 Volitional movement fMRI
Gelnar 8 Motor vs. Rest fMRI
Joliot, 1998 5 Finger tapping — Rest PET
Joliot, 1999 8 Finger tapping, PET PET
Joliot, 1999 8 Finger tapping, fMRI (average) fMRI
Kawashima 6 Increased movement, all movements PET
compared to rest
Lehericy 12 Simple — Rest fMRI
Lehericy 12 Scale — Rest fMRI
Lerner 10 Tapping — Rest, normals PET
Mattay 8 Dominant hand simple motor fMRI
Riecker 10 Main effects during index finger movements, fMRI
young adults
Rounis 16 Main effects of movement PET
Sadato 9 Right unimanual vs. Rest PET
Yoo 10 Group—level finger tapping activation fMRI

16 papers with 20 contrasts and 204 foci were included in the finger tapping
(overt movement) meta-analysis (listed in alphabetical order by first author).
n=number of subjects included in a given study.
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blurred with a FWHM of 12 mm. The ALE statistic was computed
for every voxel in the brain according to the algorithm developed by
Turkeltaub et al. (2002). A permutation test that included 5000
permutations was performed to determine the statistical significance
of the ALE results and those results were thresholded at P<0.05,
FDR-corrected (Laird et al., 2005a). ALE results were output to image
format and overlaid onto a Talairach template (Kochunov et al., 2002).

Structural equation modeling

The locations of the regions of interest (ROIs) selected for
inclusion in the structural equation model of TMS/PET data were
taken directly from the results of the ALE meta-analysis of the TMS
literature. Averaged normalized PET counts were extracted in each
ROI from cubic volumes of 125 mm? in the TMS/PET data. These
data were input to Amos 7.0 (Arbuckle, 2006a) for SEM analysis.
Each ROI was modeled as an observed variable, while TMS in-
tensity was modeled as a separate observed variable directly modu-
lating the stimulated site (Fox et al., 2006). The values of this
intensity variable were 0 (representing the Rest condition), 3 (re-
presenting the condition in which TMS was applied at 75% of the
motor threshold (MT)), 4 (representing the 100% MT condition),
and 5 (representing the 125% MT condition). Error terms on each
ROI were modeled as unknown, exogenous variables and the
regression weights of these error terms were set to a value of 1.

Model-generating specification searches

The model-generating path analysis procedure began with a
unidirectional input path (i.e., using an “instrumental variable” strategy
as defined in Appendix A) that linked the TMS intensity variable to the
left primary motor cortex (LMl},,,q) variable (site of stimulation). From
this single path, it was hypothesized that stimulation from LMlang
would propagate to one or more of the other ROIs. Based on this
reasoning, 10 unidirectional output paths were drawn from LM} ,,q to all
of the other brain regions. These paths were tested to identify the node or
nodes of propagation using model-generating specification searches,
allowing for multiple candidate models to be simultaneously tested using
optional unidirectional path loadings to determine the most appropriate
choice based on fit, parsimony, and interpretability (Arbuckle, 2006b).
The path from the intensity variable to LMIy,,,q Was set as a required
path; all other paths originating from LMI,,,,q Were set as optional. The
optional paths were combined in various permutations to form the
candidate models, thereby allowing for the assessment of which
collection of path tracings produced the model exhibiting the highest
degree of validity or goodness relative to the given data.

Two different types of specification searches were utilized: all
subsets and stepwise. The preferred type of search was all subsets since
this option tests all possible combinations of optional paths. In cases of
large numbers of optional paths, a stepwise specification search was
chosen to reduce computational time by using a combined forward and
backward heuristic search strategy. During a forward specification
search, the model with no optional paths is fitted first, then optional
paths are added one at a time to determine which path provides the
largest reduction in discrepancy between the candidate model and the
given data. In a backward specification search, all optional paths are
initially tested, then removed one by one. The stepwise search
alternates these two search strategies (beginning with a forward
search), and records the best one-optional-path model, two-optional-
path model, etc. The search continues by adding or subtracting optional
paths until a forward and a backward search is completed with no
improvement in model fit (Arbuckle, 2006b).

Model fit statistics

All specified models of signal output from LMI,,,,q were tested
and compared. The model with the lowest Bayes information
criterion (BIC) and Browne—Cudeck criterion (zero-scale) (BCC)
values was selected as the model that represented the optimal
model relative to the actual data. The BIC is defined as:

BIC :é+qln(N“>p<1>>, (1)

where C is the minimum value of the discrepancy function, ¢ is the
number of parameters, N is the number of observations in group 1,
and p" is the number of observed variables in group 1. The BCC is
defined as:

b(g> P& (p(g) +3)
N —ple) -2
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where G is the number of groups, p© is the number of observed
N(@)

variables in group g, and &) = n Sy Where N® equals the number
of observations in group g, and N equals the total number of ob-
servations in all groups combined. The BIC and BCC are predictive
fit indices that are used to select among competing models that are fit
to the same data, and provide information regarding comparative
model fit and model complexity. That is, the BIC and BCC reflect a
trade-off between the fit of a model and the effective number of
parameters in the model. The BIC and BCC statistics were chosen as
the ranking criteria over another possible relative fit measure, the
Akaike information criterion (AIC), since the AIC is not based on a
strictly Bayesian approach and therefore is not viewed with as much
reliability or accuracy as the BCC or BIC (Raftery, 1993; Arbuckle,
2006b). Selection of the model corresponding to the lowest BIC and
BCC values identified the model that contained the next level of
nodes in the network following LMl ,,4 stimulation. If the lowest
BCC and BIC values specified different models, greater weight was
given to the BCC criterion since the BIC imposes a greater penalty
for model complexity than does the BIC. This reasoning is a con-
servative choice that was made when considering the large degree of
complexity of the modeled system.

Selection of the model corresponding to the lowest BCC and BIC
identified the model that contained the next level of nodes in the network
following LMI,,,4 stimulation. From those second-level nodes, the next
stage of the analysis proceeded and optional paths were drawn to all
other regions in the network. This method of signal tracking and model
testing to determine the path outputs from all subsequent nodes
continued until no further paths were suggested via specification search.

While the BIC and BCC indices are appropriate when comparing
candidate models during the model-generating procedure, once the
final model was selected, it was necessary to evaluate the goodness
of'this model using appropriate measures of absolute and relative fit.
Assessment of model fit is not a simple process, and there exists no
definitive way to assess how well a model represents an actual data
matrix (Bollen, 1989). In fact, there is no single statistical test that
can be performed in order to identify that a given model is the correct
model (Schumacker and Lomax, 2004). Therefore, a large number
of descriptive statistics have been developed to aid researchers in
evaluating the adequacy or goodness of model relative to a given data
(covariance) matrix. In fact, multiple models can simultaneously fit the
data equally well. Thus, the final model was evaluated using a number
of descriptive fit statistics. To examine overall model adequacy, the



428 A.R. Laird et al. / Neurolmage 41 (2008) 424—436

Table 3
Results of the TMS meta-analysis

Region of interest (ROI) BA x y z ALE  mm’

Left primary sensorimotor 43 =30 —-22 50 0.0100 9208

cortex (LMIpang)

Left posterior parietal 5 =30 —42 62 0.0061 s.c.
cortex (LPPC)

Left ventral posterolateral nucleus  — -4 -26 0 0.0085 3944
of the thalamus (LTHvpl)

Left ventral lateral nucleus of the - —11 —16 14 0.0075 s.c.

thalamus (LTHvI)
Left ventral premotor area (LPMv) 6 =50 -4 18 0.0074 3576
Cingulate gyrus (Cing) 24 0 -2 44 0.0067 3024
Supplementary motor area (SMA) 6 0 —14 58 0.0065 s.c.
Right secondary somatosensory 40 42 =28 14 0.0071 2672
cortex (RSII)
Left secondary somatosensory 40 —42 —-28 16 0.0091 2552
cortex (LSII)
Right ventrolateral - 8§ —14 14 0.0074 1104
thalamus (RTHvI)

Right cerebellum (RCer) - 10 —46 —10 0.0059 800

11 ROIs were returned by the ALE meta-analysis of published studies that
investigated TMS of left primary motor cortex in normal subjects.
s.c.=same cluster as listed on previous line; ALE=maximum activation
likelihood estimation value for the given cluster; mm®=cluster volume.

likelihood ratio chi-square (x?) statistic was used to test whether the
discrepancy between the implied versus actual covariance matrix was
for statistically different (Price et al., 2002). Theoretical models that fit
the given data perfectly have a % value of zero. Thus, it is desirable to
achieve a non-significant %> value, since a high P value indicates that
the tested model cannot be refuted. Another global fit measure was
computed, known as the root mean square error of approximation
(RMSEA) and its associated 90th percentile confidence interval (90%
Clrmsga)- Obtaining an RMSEA value of less than 0.05 indicates a
good model fit. Lastly, the comparative fit index (CFI) and Tucker—
Lewis index (TLI) (relative fit indices) were computed, both of which
range from values of 0 (no fit) to 1 (perfect fit), with values of 0.95 or
greater indicating a good model fit (Schumacker and Lomax, 2004).

Results
ALE meta-analysis

ALE meta-analysis of the TMS literature yielded 11 ROIs: the
hand region of the left primary sensorimotor cortex (LMIy,,q), left

posterior parietal cortex (LPPC), left ventral premotor cortex (LPMv),
left and right secondary somatosensory cortex (LSII and RSII), left
and right ventral lateral nucleus of the thalamus (LTHv] and RTHvI),
left ventral posterolateral nucleus of the thalamus (LTHvpl), bilateral
supplementary motor area (SMA), bilateral cingulate (Cing), and right
cerebellum (RCer) (Table 3). To confirm that the TMS meta-analysis
yielded reasonable results, the TMS ALE maps were compared to two
images: (1) the activation map for the 125% MT — Rest contrast in the
TMS/PET data and (2) the ALE results of the overt movement (finger
tapping) meta-analysis. Fig. 1 shows the agreement between the
TMS meta-analysis of the literature and the suprathreshold activa-
tion results in the experimental TMS data. Overlap of the TMS meta-
analysis and activation in the 7 TMS subjects was observed in 8 of
the 11 meta-analysis ROIs: LMI},,4, LPPC, SMA, Cing, LPMyv, LSII,
LTHvpl, and RCer. No overlap was observed between bilateral tha-
lamus (RTHvl and LTHvI) and right secondary somatosensory cortex
(RSII). Fig. 2 shows the agreement between the TMS and finger
tapping meta-analyses (Table 4). Overlap between the two meta-
analyses was seen in 8 of the 11 TMS ROIs: LM} ,,4, LPPC, SMA,
Cing, LPMy, LSII, LTHvl, and RCer. No overlap was observed in the
right ventral lateral nucleus of the thalamus (RTHvI), right secondary
somatosensory cortex (RSII), and left ventral posterolateral nucleus of
the thalamus (LTHvpl). We judge these overlap data as reasonable
confirmation of the ROI selection method presented here.

Structural equation modeling

The sample size of the TMS/PET data was 56 (7 subjectsx4
conditions X 2 trials) with 23 variables: 11 observed, endogenous var-
iables for each ROI; 11 unobserved, exogenous variables representing
the error terms loaded onto those ROIs; and 1 observed, exogenous
variable for TMS intensity. Given the required path of intensity loaded
upon LMl a4, the possible loadings from LMI,,,4 to all other nodes
in the network (10 optional paths) were investigated. Specification
search (all subsets) revealed that from the LM, .4 stimulation site,
activation propagated to five regions: supplementary motor area
(SMA), cingulate gyrus (Cing), left ventral lateral nucleus of the
thalamus (LTHvI), right secondary somatosensory cortex (RSII), and
right cerebellum (RCer). We termed these loadings “first-level paths”
or the “first-level cascade” to indicate that they were the first nodes to
receive input from LMIy,,4 following stimulation; they can be viewed
in Fig. 3a (red paths).

To determine the second level of paths, optional loadings were
added from each of the five first-level ROIs to all other nodes avail-
able (5 ROIsx 10 possible nodes=50 optional loadings). The five
previous paths from LMIy,,,q were relabeled as required, not optional.

Fig. 1. Overlap between TMS meta-analysis and activation results of the TMS/PET data. These axial slices show the overall agreement between the results of the
ALE meta-analysis of 7 TMS studies (P<0.05) (red) and the activation data from 7 subjects acquired at the Research Imaging Center in the contrast of 125% MT
TMS—Rest (P<0.05) (green). Areas of overlap between these two maps (yellow) were found in the left primary motor cortex (LMly,,,q), left posterior parietal
cortex (LPPC), supplementary motor area (SMA), cingulate gyrus (Cing), left ventral premotor area (LPMv), left secondary somatosensory cortex (LSII), left
ventral posterolateral nucleus of the thalamus (LTHvpl), and right cerebellum (RCer).
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Fig. 2. Overlap between TMS meta-analysis and finger tapping meta-analysis. Shown here are the results of the ALE meta-analysis of 7 TMS studies (P<0.05)
(red), the results of the ALE meta-analysis of 16 finger tapping studies (P<0.05) (green) and the overlap between them (yellow). Overlap between these two ALE
maps exists in the left motor cortex (LMIy,,q), left posterior parietal cortex (LPPC), supplementary motor area (SMA), cingulate gyrus (Cing), left ventral
premotor area (LPMv), left secondary somatosensory cortex (LSII), left ventral lateral nucleus of the thalamus (LTHvI), and right cerebellum (RCer).

Due to the large number of possible paths in this level of the analysis, a
stepwise specification search was performed, which returned a best fit
model with 17 additional loadings as seen in Fig. 3b (green paths).
There were 9 ROIs that received input due to the second-level paths:
LMIpang, LSIL, LTHvl, Cing, RTHv1, RSIL, LPPC, LTHvpl, and LPMv
(only the SMA and RCer received no input at the secondary level).

To determine the third-level paths, optional loadings were drawn
for the 9 nodes listed above; both first-level and secondary-level paths
were set as required. Stepwise specification search revealed only five
additional loadings in the model: RTHvl to LPMv, LPMv to LTHvpl
and LSII, LMl ,nq to LSII, and LPPC to LTHvpl (Fig. 4, blue paths).
A fourth-level specification search with optional loadings originating
from these three additional nodes (LPMv, LTHvpl, and LSII) revealed
no other paths should be added to the model.

Model fit statistics

Measures of model goodness and fit for all three levels of spe-
cification searches (Table 5) show that while the initial model of
only 6 loadings did not fit the data well, additional levels of
analysis improved the fit of the model dramatically. Specifically,
the last round of specification searches generated an extremely
large increase in the P value, resulting in the non-significance of
the model (P=0.004 for second-level paths to P=0.981 for third-
level paths; Table 5). This large transition possibly indicates the
introduction of critical paths during that stage of the analysis. After
the last round of specification searches, the estimates were cal-

culated and it was determined that the overall final model fit was
outstanding (3>=22.150, df=38, P=0.981, CFI=1.0, TLI=1.0,
RMSEA=0.000, 90% Clgmsea=0.000-0.000). These statistics

Table 4

Results of the finger tapping meta-analysis

Region of interest (ROI) BA «x y z ALE  mm’
Left primary sensorimotor 43 —-38 —28 52 0.0345 25,288

cortex (LMIyang)
Left secondary somatosensory 40  —48 —-26 22 0.0145 s.c.
cortex (LSIT)

Left ventral premotor 6 -34 -4 4 0.0178 15,504
area (LPMv)

Left ventral lateral nucleus of -  —14 —18 6 0.0169 s.c.
the thalamus (LTHvI)

Supplementary motor 6 -6 —10 50 0.0326 13,104
area (SMA)

Right cerebellum (RCer) - 18 =50 —20 0.0216 6544

Right primary motor 43 50 —-28 42 0.0106 4872
cortex (RMIpanq)

Left cerebellum (LCer) - -22 —=56 —24 0.0101 1072

Right middle frontal 9 34 32 32 0.0088 656

gyrus (RMiFG)

9 ROIs were returned by the ALE meta-analysis of published studies that
investigated simple finger tapping of the dominant hand by right-handed,
normal subjects.
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Fig. 3. First-level and second-level paths in the LMI TMS model. (a) Following stimulation with TMS, exploratory SEM revealed that the signal propagated from
LMI}ang to five nodes, designated by the five red paths to supplementary motor area (SMA), cingulate gyrus (Cing), left ventral lateral nucleus of the thalamus (LTHv1),
right secondary somatosensory cortex (RSII), and right cerebellum. We termed these “first-level paths.” (b) Propagation of the TMS signal from those five nodes to all
other nodes was determined next, generating the second-level paths in the model (green paths). Error terms are represented by the circular variables.
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Fig. 4. Final model of LMIy,,,4 connectivity. Exploratory analysis of 11 TMS
ROIs using SEM revealed a complex network of LMI,,,,g connectivity that fit
the data extremely well (£*=22.150, df=38, P=0.981, CFI=1.0, TLI=1.0,
RMSEA =0.000, 90% Clgnsea =0.000—0.000). Red paths=first-level paths
from LM1; green paths=second-level paths; blue paths=third-level paths.
Error terms are represented by the circular variables.

indicate little difference between the sample variance—covariance
matrix and the reproduced variance—covariance matrix implied by
this model (Schumacker and Lomax, 2004). Regression weights
for these paths can be seen in Table 6. A non-recursive (i.e., inter-
dependent systems) loop is present in the final model, involving
the nodes of left motor cortex (LMI}anq), right cerebellum (RCer),
supplementary motor area (SMA), and cingulate gyrus (Cing).
Non-recursive relations pose a unique challenge during simulta-

Table 5
Fit statistics of the models in each level of analysis

C C—df  BCC(0) BIC(0) C/df P
First-level paths 410.998 350.998 0.000 1.090  6.850 0.000
Second-level paths ~ 71.232  28.232  0.000 1.533  1.657 0.004
Third-level paths 22.150 —15.850 0.000  0.000 0.583 0.981

Overall model goodness improved as more paths were added via
specification search. The first-level cascade contained only the intensity to
LMIj,.ng loading and the 5 loadings originating from LMIy,,,4 (6 total paths;
Fig. 3a, red paths). The second-level paths added 17 additional loadings to
the model (23 total paths; Fig. 3b, green paths). Lastly, 5 loadings were
added in the third-level of specification searches (28 total paths; Fig. 4, blue
paths).

C=minimum value of the discrepancy (x> value); df=degrees of freedom;
BCC(0)=Browne—Cudeck criterion, scaled such that the lowest BCC is
zero, with all other values being positive; BIC(0)=Bayes information
criterion, also scaled such that the minimum value for the tested models
equals zero; P=probability of getting as large a discrepancy as occurred
with the present sample (P value for testing that the model fits perfectly in
the given population). For both BCC and BIC, smaller values indicate a
higher degree of goodness than larger values. For P, larger values indicate a
better fit of the model.
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Table 6

Maximum likelihood estimates of the final model

Path Estimate Std. Estimate S.E. CR P
LMI « Intensity 36.228 0.562 19.921 1.819 0.069
LTHvl < LMI -0.419  —0.192 0234 —1.792 0.073
LTHvl < SMA 1.336 0.416 0.333 4013 ***
LTHvl « RCer 1.079 0.536 0.210 5.151  HFH*
RTHvl < LTHvl 0.766 0.921 0.044  17.564 ***
RSII « LMI 0.550 0.500 0.108 5,112 ***
RSIT « LTHvl 0.177 0.351 0.056 3.167 0.002
RSII « RCer 0.439 0.432 0.115 3.831 k¥
LPPC « RCer 0.426 0.481 0.114 3,727  k¥*
LPPC « LTHvI -0.302  —0.687 0.057 —5.340 ***
LPMv « RTHvl 0.355 1.000 0.084 4227  *F*
LPMv « LTHvl -0.215 —0.738 0.075 —2.870 0.004
LPMv « RCer 0.289 0.493 0.065 4439  FE*
LTHvpl « RSII 0.369 0.296 0.114 3.234  0.001
LSII « RSII 1.289 0.624 0.185 6.975  F*k*
LSII « LMI -0.505 —0.222 0.197 —2.567 0.010
LSII < LPMv 0.787 0.220 0.296 2.662 0.008
LTHvpl « LPPC 0.378 0.265 0.117 3.236  0.001
LTHvpl « RCer 0.312 0.246 0.131 2.373  0.018
LTHvpl « LPMv 0.925 0.429 0.208 4450 xx*
LSII < SMA -0.686  —0.205 0.264 —2.594 0.009
LSII « LTHvl 0.221 0.212 0.105 2.097 0.036
Cing < SMA 0.379 0.429 0.143 2.659 0.008
LMI « Cing -1.578  —0.946 1.340 —1.178 0.239
Cing «— LMI 0.460 0.767 0.144 3.186 0.001
SMA «— LMI 0.319 0.469 0.125 2.550 0.011
RCer « LMI 0.010 0.009 0.247 0.042 0.967
Cing < RCer 0.322 0.581 0.103 3.113  0.002

After the model-generating procedure SEM, the estimates for the final model
were calculated as seen in Fig. 4.

Estimate =estimate of the regression weight (e.g., when intensity goes up by
1, LMI}anq goes up by 36.228); Std. Estimate=estimate of the standardized
regression weight (e.g., when intensity goes up by 1 standard deviation,
LMIpng goes up by 0.562 standard deviations); S.E.=standard error of the
regression weight; CR=critical ratio for regression weight, which is
computed by dividing the regression weight estimate by the estimate of its
standard error (e.g., for the path from intensity to LM}, the regression
weight estimate is 1.819 standard errors above zero); P=level of sig-
nificance for regression weight; ***P<0.001 (Arbuckle, 2006b).

neous estimation of the model structural coefficients due to an
infinite sequence of linear dependencies among nodes. For some
regression weights, these dependencies will converge to a set of
well-defined relations, thereby exhibiting system stability. To
ensure that an adequate level of stability for the network system was
achieved (i.e., within the range of —1.0 to +1.0; Bentler and
Freeman, 1983; Fox, 1980), we used an instrumental variable design
strategy (Heise, 1975). Once implemented, the stability of the
recursive loops and the entire system was estimated using the full
information maximum likelihood (FIML) estimation algorithm (to
allow for a sparse variance—covariance matrix) with the ridge
regression option invoked. The statistical basis for evaluating the
stability of the non-recursive path model is provided by Bentler and
Freeman (1983) and is described in Appendix B. The stability index
was observed as +0.78, indicating a mathematically stable solution.

In Table 5, all three values of the Brown—Cudeck criterion (BCC)
are zero. Since Amos only uses BCC values in a comparative sense,
zero-scaled BCC values are used in which the lowest BCC is set to 0,
and the other values are scaled accordingly. Thus, the BCC values of

zero in Table 5 indicate that the three models listed were the lowest
of their respective stage of the analysis. The BIC values for the first-
and second-level analyses are non-zero, indicating that these were
not the models specified by the lowest BIC values. In the two cases
of conflict between the BCC and BIC, the BIC specified models with
two fewer paths (due to its increased penalty for model complexity),
thus returning alternate models that were extremely similar to those
generated when using the BCC as a selection criterion. In the last
stage of analysis (third-level paths), the BCC and BIC returned the
same model.

Discussion

The main aim of this study was to use TMS/PET as a novel
approach to quantifying effective connectivity during stimulation of
the LMI,,,ng region. ALE meta-analysis of the TMS literature was
used to identify regions of interest (ROIs) that were subsequently
analyzed in a TMS/PET data set of 7 subjects using a model-
generating SEM procedure. Eleven ROIs and TMS intensity were
modeled as observed variables in the path model. Exploratory SEM
analysis revealed that after TMS of LMy, activation propagated
to five regions: the supplementary motor area (SMA), cingulate
gyrus (Cing), left ventral lateral nucleus of the thalamus (LTHvI),
right secondary somatosensory cortex (RSII), and right cerebellum
(RCer). Further signal propagation was determined, resulting in the
model observed in Fig. 4. This final model fit the data extremely
well, indicating little difference between the actual and model-
implied covariance matrices (x2=22.150, df=38, P=0.981,
CFI=1.0, TLI=1.0, RMSEA=0.000, 90% Clgmsga=0.000—
0.000). The validity of this method was established through both
quantitative and qualitative measures. Quantitatively, an outstanding
fit was observed, and a comparison of fit statistics in previous SEM
studies suggested that the exploratory nature of this analysis is
responsible for the fit of the model. Qualitatively, the utility of the
ROI selection method (via meta-analysis) presented here was con-
firmed by a comparison with both an analysis of the TMS/PET data
and a meta-analysis of overt movement. Consistent findings be-
tween the final model presented here and SEM motor studies in
humans and motor connectivity studies in the macaque literature
were observed. In addition, various features of the final path model
were explored, including connections to secondary somatosensory
cortex and model criticisms.

Fit statistics of the final path model

As stated previously, the final model seen in Fig. 4 fit the ex-
perimental data extraordinarily well. There are three plausible reasons
that might explain why such a good fit was obtained. First, the
parametric manner in which TMS was utilized over a wide range of
intensities possibly contributed to a greater degree in which the system
was probed, leading to the robustness of the results. Second, it is
conceivable that the task-independent nature of stimulation with TMS
is more conducive in general to the analysis of network interactions.
Finally, the exploratory nature of this analysis might have been a
critical factor in the strength of the overall results. A briefinspection of
the SEM literature in neuroimaging isolated a sub-sample of studies in
which the global fit measures of a single model or models were
published, rather than the more prevalent ¥ difference values be-
tween two models. These studies presented SEM analyses that were
either exploratory (Zhuang et al., 2005; Peltier et al., 2007) or
confirmatory (Goncalves et al., 2001; Honey et al., 2002; Glabus
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et al., 2003; Erickson et al., 2005; Au Duong et al., 2005; de Marco
et al., 2006), and examined a mixture of paradigms and subject
groups. After comparing the reported model fit indices and ex-
perimental design factors for each paper, the first two possible ex-
planations of the excellent degree of the results presented above were
refuted. However, no hypothesis-driven models in the examined
studies obtained fit statistics as good as those observed in the ex-
ploratory analyses. A reasonable interpretation is then that taking a
data-driven approach to generate an optimal model is a more precise
way to investigate effective connectivity. While this may seem a
trivial conclusion, it is still a point that must be made, given the
overwhelming preference in favor of testing a priori SEM models in
neuroimaging data. More research is needed to determine if this is an
accurate assessment of the data and the analysis method.

Plausibility of LMl regions

Overall, excellent agreement was found between the TMS meta-
analysis results and (1) the activation map for the 125% MT — Rest
contrast in the TMS/PET data of 7 subjects, and (2) the meta-analysis
results of voluntary right-finger tapping. In comparison to the 125%
MT — Rest activation map, overlap was found in the LM .4, LPPC,
SMA, Cing, LPMy, LSII, LTHvpl, and RCer (Fig. 1). While the ROIs
for SEM analysis could have been selected from the activation map
alone, the meta-analysis approach provided a more defensible means
of isolating nodes common to a larger group of subjects, thereby
reducing variability due to imaging and analysis methods. In general,
ROI selection is highly variable among SEM studies. Using meta-
analysis as a technique for ROI selection provides a more stan-
dardized, less user-dependent strategy. Overlap between the meta-
analysis results and the activation results indicates that the present
TMS/PET data agree well with other reports in the literature, and gives
greater confidence in the selection of motor regions.

Second, in the comparison between the TMS and finger tapping
meta-analyses, overlap was seen in the LMI, LPPC, SMA, Cing,
LPMy, LSII, LTHvl, and RCer (Fig. 2). Regions present in the TMS
meta-analysis that were not observed in the finger tapping meta-
analysis are arguably more strongly related to the somatosensory
system (LTHvpl), and their omission can be attributed to laterality
issues associated with right-handed finger tapping (RTHvI and RSII).
Thus, with a few exceptions, the TMS network identified via meta-
analysis agrees well with the network of voluntary motor function.
These results confirm that the meta-analysis method of ROI selection
was successful both in identifying the nodes stimulated with TMS and
that these nodes are representative of general motor function.

Plausibility of LMI},,,q connections

The final model generated through exploratory path modeling
includes a large number of both ROIs and loadings, which implies a
level of complexity appropriate for a neural systems model. The
presence of many of the observed paths in the final model have been
confirmed in previous SEM studies of self-initiated and externally
cued finger movements (Taniwaki et al., 2006) and visually guided
motor grasping (Grafton et al., 1994), including various paths
connecting left primary motor cortex (LMI), supplementary motor
area (SMA), left ventral lateral nucleus of the thalamus (LTHv1), left
ventral premotor cortex (LPMv), left ventral posterolateral nucleus
of the thalamus (LTHvpl), and right cerebellum (RCer).

In addition to finding agreement between the final model pre-
sented here and other published SEM results of human neuroima-

ging data, agreement was also found between these results and the
macaque literature. The connections in the final model were com-
pared to the connectivity map of the FI,, region (the homologue
of Mlang) (Karol and Pandya, 1971; Schmahmann and Pandya,
2006). In the present model, direct LMIy,,q connections were
observed to the cingulate cortex, supplementary motor area, secon-
dary somatosensory cortex (SII), thalamus, and cerebellum.
Convergence exists between these connections and the connectiv-
ity of FI in the macaque (Schmahmann and Pandya, 2006), giving
further support to the validity of these results. The complexity of
the presented model of LMI connectivity is well supported by the
macaque literature and likely provides a realistic model of motor
system connectivity.

LMI},.na path model features

In the present model, five regions are directly modulated by
LMIj,nq following TMS: SMA, Cing, LTHvl, RSII, and RCer (Fig. 3a,
red paths). Thus, there were five nodes that did not receive immediate
input from LMI,,,,q and were thus not introduced into the model until
later in the analysis. For example, left premotor cortex (LPMv) was
introduced only after receiving input from the left ventral lateral
nucleus of the thalamus (LTHvl) and right cerebellum (RCer). In
addition, the left ventral posterolateral nucleus of the thalamus
(LTHvpl) was introduced after receiving input from right secondary
somatosensory cortex (RSII) and right cerebellum (RCer) (Fig. 3b,
green paths). It is interesting to note that all possible nodes were
introduced into the model during either the first- or second-level
analyses, leaving no new nodes to be introduced in the third-level
analysis.

At this point, it is unclear what functional significance can be
attributed to the first-, second-, and third-level cascades. The hier-
archical nature of the present method adds paths to the model in an
iterative fashion, and this model progression is data-driven and
guided by the search for the model yielding the best indices of model
goodness and fit. It can be seen that the order in which some of these
paths were added was merely based on the fact that a region cannot
directly load onto another region until the first region receives a
loading itself (e.g., LPPC — LTHvpl is not added to the model until
after the incoming paths to the LPPC are considered). However, one
loading (LMI — LSII) does not show up until the third-level paths
are tested, despite the fact that this particular path was tested in the
first-level cascade following LMIy,,q stimulation. It is unknown if
the level of analysis ascribed to a loading is a function of the distance
traveled from the site of stimulation, the strength of the connection,
or the loading’s relative influence in the entire network. For now, this
issue remains open for exploration in future studies.

The loading of LMI},,4 onto RCer was small (standardized path
coefficient=0.009), but this path had a critical effect on the model
as seen in the large number of second-level outgoing paths from
cerebellum to RSII, Cing, LTHvl, LTHvpl, LPMv, and LPPC.
Investigation of the total effects that each variable had on all the other
variables in the model (McIntosh and Gonzales-Lima, 1994) revealed
that the average total effects of the right cerebellum on all other var-
iables was the largest in the entire model (average total effects=
0.308). Thus, in this model of LMI},,q connectivity, it is evident that
the right cerebellum is a major relay station for information from
LMl g to cortical and subcortical nodes in the network. This finding
of'the importance of the LMI},,,4 to RCer connection, despite its small
path coefficient, casts doubt on the practice of filtering out paths with
small regression weights.
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Table 6 shows the standardized path coefficients for the loadings in
the final model (Fig. 4). Note that several of these coefficients are not
significant. Once the model-generating analysis was complete and no
more additional loadings were suggested, the lower or insignificant
regression weights (e.g., LMI to RCer) were not additionally filtered.
To do so would have rendered the exploratory signal tracking
procedure unsound. That is, since the goal was to track the TMS
signal, once a connection was created it was necessary for future
specification searches (e.g., the LMI to RCer loading was introduced
during the first-level cascade and therefore was relevant to all five
outgoing paths from the RCer determined in the second-level model).

In particular, Table 6 shows that the path from Intensity to
LMIj,nq is not significant (P=0.069), yet it is clear that the data
supports the inclusion of this path. To illustrate this, in the final
model we labeled the Intensity — LMI connection as optional and
tested the two candidate models. The model that included the con-
nection obtained much lower BCC and BIC values (0.000 for both
criteria) as compared to the model that omitted this path (BCC=
4.646 and BIC=3.239). In terms of the absolute and relative fit
statistics, excluding this path resulted in a decrease in the fit of the
data to the given model (P<0.981 with the path, as compared to
P<0.867 without the path). Thus the data does support this path.

The regression weights (unstandardized =36.22, standardized =
0.562) were observed as being not statistically significant, but they
are classified as being “large” (Cohen, 1988). Mathematically, the
test of statistical significance is equal to the product of the effect size
and the size of the study (sample size). Although the regression of
LMI on Intensity was not statistically significant, the magnitude of
the regression weight is practically important. For correlations, the
effect size is the coefficient of determination (R?) and indicates the
variability in the model that can be predicted from the relationship
between the two variables. The importance of the effect size in this
case is evidenced by the regression path exhibiting a coefficient of
determination of 0.3158. That is, 32% of the variability in the overall
model was accounted for or explained by this single path. From a
practical perspective, this effect is reasonable, considering the large
physiological effect delivered to the site of stimulation (i.e., LMI) by
the TMS coil. Thus, while the regression weights were found to be
not statistically significant, this is a result of the small sample size,
and not due to any weakness in the final model.

Path connections to secondary somatosensory cortex (SII)

In the final TMS connectivity model (Fig. 4), LMIy,,q4 is found to
act directly upon both left and right secondary somatosensory cortex
(SII). However, these two loadings are very different. LMI to RSII was
added as a first-level path, right after LMI received input from TMS.
During this stage of the analysis, the data did not support a connection
from LMI to LSII. As mentioned previously, this path was not added
until the third-level analysis. Between the first-level and third-level
analyses, only one variable acted upon LMI: the cingulate gyrus.
Thus, the LMI to LSII connection was only made possible afier LMI
received input from the cingulate cortex. This was also accompanied
by a loading of RSII onto LSII. We hypothesize that the nodes in these
interactions (LM, RSII, LSII, and Cing) are particularly important in
the LM}, connectivity network. The LMI — Cing — LMI non-
recursive loop seems especially significant since the cingulate gyrus
was found to have a direct effect only on LMI, and conversely, the
only node to directly input LMI was the cingulate gyrus. Our
interpretation of these observations is that the LMI/Cing feedback
loop is of critical influence in the present network.

Model criticisms and limitations

There are three major criticisms of the final model. The first
criticism is that this model does not include a variable for primary
somatosensory cortex (SI). The aim here was to remain very strict in
only extracting data from ROIs explicitly returned by the meta-
analysis. The largest ALE cluster returned centered on left primary
motor cortex (LMI), which was connected to a secondary cluster in
BA 5 in posterior parietal cortex (LPPC). The results did reveal that
activation of left SI was included in this large frontal—parietal cluster,
contained in the zone bridging the primary motor cortex to PPC.
However, since SI was not represented as a well-defined sub-cluster
in the ALE results, it was not possible to include this region as a node
in the path model. Hence, the coupled interaction between MI and SI
was not dissociated using the current methodology.

The second major criticism of the model is that a second-level
path was found from the left to the right ventral lateral nucleus of
the thalamus, despite the fact that there is no known connection
between these nuclei (Carpenter, 1985). There are two possible
reasons why this path was generated: (1) these regions are located
very close to each other in space, resulting in the acquisition of
highly correlated data that is not representative of functionally
connected regions; or (2) the LTHv] to RTHvl connection in the
model is an indirect one, possibly modulated by an unknown
variable not included in the existing network. Analysis of the total
effects of each variable in the model initially suggested the former
cause. That is, the effects of all other variables on both the LTHvI
and RTHvl were nearly identical to each other, indicating that the
two nodes received input more as a single entity rather than two
distinct variables. However, close examination revealed that this
occurred since RTHvI only received direct input from LTHv]. At
this point, neither of the above reasons may be ruled out.

Thirdly, a similar criticism lies in the fact that the literature does
not support a direct connection between LM, ,,q and contralateral
secondary somatosensory area (RSII). This first-level path in the
final model may also represent an indirect path modulated by an
unknown ROI. A related explanation for the presence of this loading
may be due to the fact that the effects of primary motor (MI) and
primary sensory (SI) regions could not be dissociated. As the SII
area receives both contralateral SI and SII input (Jones and Powell,
1969), the first-level path from LMlI,,,,4 to RSII could simply be due
to somatosensory input distributed to both hemispheres following
stimulation with TMS. Typically, the connection from MI to ipsi-
lateral SII has been discussed in primate literature, with no mention
of a connection from MI to contralateral SII (Stepniewska et al.,
1993; Schmahmann and Pandya, 2006). It has not been shown that
RSII is physically connected to LMIj,apq-

Lastly, a potential limitation of this study lies in the selection of
subject data. Data were analyzed in seven subjects who showed
measurable PET response during TMS (i.e., the “cortical responder”
group) (Fox et al., 2004, 2006). Data were omitted from the group of
“cortical non-responders” (n=4), who exhibited no significant PET
activations during TMS at the site of stimulation (LMI) or any other
regions. When comparing the responders and non-responders, the
same average EMG response was observed in terms of the
magnitude and latency of response. Further analysis of these
subjects indicate that the absence of a cortical response to TMS was
a real effect, not an artifact of statistical thresholding (Fox et al.,
2004), and it has been hypothesized that this effect was due to direct
stimulation of the exiting corticospinal axons, rather than MI gray
matter (Fox et al., 2004, 2006). Thus, the non-responders remain a
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perplexing group of subjects, particularly so since strong PET
responses were observed during overt finger movement in this
group. Inclusion of these subjects into the SEM analysis of
responders would have confounded the results and rendered them
difficult to interpret, since no difference in signal was detected
between rest and TMS in the pre-specified ROIs. With this in mind,
we chose to only analyze the responders as they revealed consistent,
measurable responses during the given conditions. While it is clear
that the lack of a PET-detected response during corticospinal
excitation as shown by EMG is intriguing and would likely reveal
connectivity differences between the responders and non-responders,
this comparison was not possible due to lack of power (n=4). In
conclusion, the dichotomy of subject responses to TMS led to an
overall bias in data selection. This selection, in turn, may possibly
limit the conclusions drawn in this study, contributing to findings
that cannot be extrapolated to the general population.

Future work

Applying SEM to TMS/PET data yielded insightful information
on the effective connectivity of LMIy,.,q. We feel that this technique
holds great promise for further studies of effective connectivity.
However, at this point, it is unclear how generalizable the results are.
For example, it is unknown if any of the network connections
determined in the path model are similar to the connections at work
during the performance of a functional task. Future studies will
involve testing the model presented in Fig. 4 in task-dependent data,
such as right-handed finger tapping. Alternatively, while the model
generated here included contributions from TMS data acquired over a
range of intensities, this analysis could be pursued on the individual
conditions, either above or below motor threshold (i.e., with and
without overt movement). This type of analysis might prove valuable
in dissociating the relative roles of proprioception and efference copy
within the sensorimotor system. Lastly, it would be interesting to
apply this exploratory analysis technique to data in which other nodes
in the network were stimulated, such as the supplementary motor area,
secondary somatosensory cortex, or premotor regions.

Conclusions

In this study, H3>O PET data were acquired during stimulation
of the hand region of the primary motor cortex (LMly,nq) using
transcranial magnetic stimulation (TMS). The data were analyzed
using structural equation modeling (SEM) in order to study the
effective connectivity of the human motor system during task-
independent stimulation. It was determined that meta-analysis
of the existing literature using activation likelihood estimation
(Turkeltaub et al., 2002; Laird et al., 2005a) yielded plausible
regions of the motor system in an unbiased fashion. These regions
were modeled in TMS/PET data using a model-generating path
analysis procedure. The resulting hierarchical model fit the data
extremely well, which, based on an inspection of similar studies,
may be due to the exploratory nature of the analysis. Overall, the
plausibility of the brain ROIs and path connections was sub-
stantiated in the human and macaque literature. In the final path
model, it was determined that the LMl ,,q to right cerebellum
(RCer) loading was critically important to the network interactions,
despite the small path coefficient for this loading. This finding
casts doubt on the practice of filtering out paths with small
regression weights. Lastly, a strongly influential feedback loop was
observed between LMIj,,,q and the cingulate gyrus (Cing).
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Appendix A. Instrumental variables

To address the challenge of estimating stable and reliable struc-
tural coefficients within the context of non-recursive or interdepen-
dent systems path analytic modeling, the guidelines for using an
instrumental variable (e.g., TMS intensity) were followed as offered
by Heise (1975, pp. 160-161).

A. A variable, X (e.g., TMS intensity), is an instrument for Y (e.g.,
LMIjnq) in the non-recursive relationship Y (e.g., LMI nq) = Z
(e.g., Cing) if
(a) X has no direct effect on Z;

(b) X does affect Y, either directly or through an intervening
variable that has no direct effect on Z;

(c) neither Yor Z has a direct or indirect effect on .X;

(d) no unspecified factor jointly affects X and Z and, in
general, X is uncoordinated with the disturbances (i.e.,
errors) of Z.

B. A variable, X', that is only correlated with Yalso is an instrument
for the Y — Z relationship providing it fulfills conditions (a), (c),
and (d) above.

Appendix B

The application of linear structural equations to our data con-
sisted of equations in random vectors of the form attributed to
Bentler and Freeman (1983):

n=Bn+TIt+¢ (B1)

where B is the square of the coefficient matrix for the structural “direct”
effects of endogenous variables, #, on each other, I is the coefficient
matrix for the direct effects of exogenous variables, &, on endogenous
variables, and ¢ is a residual error vector (Joreskog and Sorbom, 1981).
Using algebraic manipulation and substituting the right hand
side of Eq. (B1) for #, we have:
=B+ (I +B)(T¢ +¢) (B2)
Substituting (B1) into (B2), yields
n=Bn+(1+B+B*)(I'¢+q) (B3)
Performing this operation k& times yields

n=B+ (1+B+B*+ - +B" ) (I¢+0) (B4)

In (B4), the coefficient matrix B* represents the “indirect” ef-
fects of length & for endogenous variables on each other. Since £ is
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arbitrary, the ultimate effect of endogenous variables on endogen-
ous variables is given by B¥ as k gets arbitrarily large. The ultimate
effect of exogenous variables on endogenous variables is given by
(I+B-+B" Y, as k gets arbitrarily large. In the case of the effects
of endogenous variables on each other, the total effect is defined by
the sum B+B2+B?-+B* [from (B1), (B2), (B3), and (B4)] as k
gets arbitrarily large. In the case of the effects of exogenous
variables on endogenous variables, the total effect is defined as the
ultimate effect. If these effect matrices “converge” to specific
matrices, the system is termed “stable.” Further, a square matrix B
is called convergent (Ben-Israel and Greville, 1974) if

B*—0 as koo (BS)

And a matrix is “convergent” if and only if the absolute value of
the largest eigenvalue is less than 1, i.e.,

p(B)<l1 (B6)
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