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In recent years, the increasing richness of data generated by fMRI and
PET brain mapping studies has encouraged the growth of meta-analysis
research. In response to this progress, a new method of quantitative, voxel-
based meta-analysis, termed activation likelihood estimation (ALE), has
been developed and applied in a number of cognitive and perceptual
domains. Here, the method is discussed and findings from a meta-analysis
of the Stroop task are highlighted.

26.1 META-ANALYSIS OF THE FUNCTIONAL BRAIN
MAPPING LITERATURE

Research in human functional brain mapping (HFBM) using func-
tional magnetic resonance imaging (fMRI) or positron emission
tomography (PET) has increased at an astonishingly fast rate over
the past ten years, and this activity has generated a deluge of
published articles in the field. As a consequence, there exists an
extremely rich resource available and suitable for large-scale data
mining and meta-analysis of data designed to localize activation
patterns of various behavioral paradigms. This list of paradigms
includes, but is not limited to, tasks such as delayed match to sam-
ple, Stroop, mental rotation, saccades, semantic discrimination, and
finger tapping. While any single functional neuroimaging study can
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highlight the neural activity that occurs in response to a unique com-
bina}tion of task implementation, imaging parameters, and scanning
environment, combining the data obtained from multiple, indepen-
dent studies gives a measure of the robustness of the observed acti-
vation patterns.

There are a number of imaging standards in HFBM, but there are
two in particular that allow for quantitative meta-analysis of fMRI
and PET data. First, nearly all published studies include the analysis
step of spatial normalization in which individual subject brains are
warped and transformed into a standard brain space, referenced to
a brain atlas. Second, it has become very common for researchers to
report locations of brain activation in response to a stimulus or task
as stereotactic (x, y, z) coordinates, reflecting the centers of mass of
the activated brain regions. These two standards, one an analysis
standard and the other a reporting standard, have encouraged the
growth of a new category of meta-analysis possible with functional
neuroimaging data.

Meta-analysis, generally defined as the post hoc combination of
%ndependently performed studies to better estimate a parameter of
interest, has been utilized for decades in many medical fields.! -3
Traditional meta-analyses often merge nonsignificant results to test
for significance in pooled data. In human functional brain mapping,
function-location meta-analysis has emerged as an analysis tool in
whichsstatistically significant effects from published studies are com-
bined to create predictive models of neural systems.*3

Function-location meta-analysis must be distinguished from tra-
ditional literature review. The most common method of literature
review in HFBM is to construct a table or figure that summarizes
the activation patterns of a given group of studies. This can be
done either by plotting stereotactic coordinates of activation on a
§tandard brain, organizing the coordinates into a bar graph that
1s segregated by cortical and subcortical regions, or by creating a
table that individually lists these foci in text format. These methods
are widely used for finding agreement among studies with simi-
lar experimental contrasts and are well accepted.®~1? However, as
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opposed to meta-analysis, these reviews do not involve any quan-
titative analysis of the patterns of brain activations, yield no formal
estimate of probability, and are difficult to visually interpret.

26.2 ACTIVATION LIKELIHOOD ESTIMATION (ALE)

In 2002, Peter Turkeltaub'® presented a new and quantitative meta-
analysis method, termed activation likelihood estimation, or ALE.13
In this first ALE publication, the method was presented, applied in a
meta-analysis of single word reading PET studies, and verified in an
fMRI reading task. Around the same time, Chein et al.'* published a
meta-analysis of working memory studies using an analysis method
termed aggregated Gaussian-estimated sources (AGES), which fol-
lows the same general procedure detailed by Turkeltaub et al.l® The
simultaneous development by two groups of the same voxel-based
meta-analytic tool is strongly indicative of the timeliness and utility
of this form of meta-analysis. For simplicity, we henceforth refer to
this method as an ALE meta-analysis.

In ALE, each x, y, z coordinate of activation is thought of notas a
single point of activation, but rather as the center of a Gaussian prob-
ability distribution. While this is a rough approximation to the real-
life complexity of three-dimensional clusters of activation in brain
space, Turkeltaub’s results were surprisingly robust and introduced
a new era of meta-analysis research in functional neuroimaging. In
an ALE meta-analysis, three-dimensional coordinates in stereotac-
tic space are collected and filtered from a number of similar stud-
ies. These coordinates are typically published relative to Talairach
space'® or Montreal Neurological Institute (MND) space'® and must
be spatially renormalized to a single template. This transformation
has generally been performed using the mni2tal transform.'” How-
ever, a recent study has shown that the mni2tal transform is not
optimal and has recommended best-fit coordinate transforms for use
with different brain templates (ICBM-152 and MNI-305) and differ-
ent software packages (FSL and SPM2).'® Once all the included foci
in the meta-analysis refer to locations in a single stereotactic space,
the ALE analysis begins.
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26.2.1 The ALE Statistic

Each reported coordinate (focus) is

. >d o modeled by a three-di i
Gaj1us51an distribution, defined by a user—sgecified F\:\Ilnlil?/ISI?fI:;a]i
width aF half .max1mum). If X; denotes the event that the jth focus i
located in a given voxel, then the probabili ol
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N exp(—d?/202)
Pr(X;) = W <AV (1)
whe.re d; is the Euclidean distance from the center of the voxel
the.zth focus, o is the standard deviation of the Gaussian die t:o
bu_tl'on, and Pr(X;) satisfies 0 < Pr(X;) < 1. The Gaussian : t:.
ability density is multiplied by AV = 8mm? (correspondirI: ot-
voxel dimension of 2mm x 2mm x 2mm) in order to obtaingth0
probability estimate for the entire voxel volume, instead of its Cene-3
tral-point. If X denotes the event that any foci are located within
a given voxel, then Pr(X) is defined as the union of all Pr(X;)
where Pr(X;) is shown in Eq. (1). This value, Pr(X), is defined as tlllé
ALE statistic and quantifies the likelihood of activation at a given
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26.2.2 Permutation Tests

The ALE statistic is computed at every voxel in the brain. In order
to make a valid assessment of the significance of the results, a non-
pa.rametric procedure for testing the statistic images was de\;eloped
using permutation test.! To test the null hypothesis that the foci
are uniformly spread throughout the brain, ¥ random foci are gen-
erated, where x equals the number of foci included in the ALE
meta-analysis. The corresponding ALE values for these random foci
are computed. This process of randomization and computation of
rela.beled statistics is repeated 1000-10 000 times, depending on the
desired precision of the test. The set of ALE values calculated from
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the random foci forms the null distribution of the test statistic. A
whole-brain histogram is computed in which the null hypothesis of
uniformly distributed foci is rejected for voxels with an ALE value
greater than the critical threshold. The critical threshold is defined
as the 100(1 — o)™ percentile of the permutation distribution, where
o refers to the desired level of significance.

26.2.3 Modifications to the ALE Approach

When ALE was introduced in 2002, a discussion of its limita-
tions and areas in need of further development were provided.”®
In response to this discussion, two areas of interest were subse-
quently developed and tested.? First, the permutation test proposed
by Turkeltaub et al. was improved in order to more accurately
derive null distributions for the ALE statistic using a correction
for the multiple comparisons problem that controls for the false
discovery rate.??? Second, a reliable method testing for the dif-
ferences between two ALE meta-analyses was established. These
modifications to the ALE method are currently distributed with
an image-based graphical user interface as part of the BrainMap
database project (http: //brainmap.org). BrainMap is a free, commu-
nity database of published functional neuroimaging results in the
form of Talairach or MNI coordinates,??* and is committed to con-
tinued support and development of advanced meta-analysis tech-

niques, including ALE.

26.3 ALE META-ANALYSES OF HUMAN COGNITION
AND PERCEPTION

In May 2005, as a result of a virtual workshop on meta-analysis
techniques,®® the journal, Human Brain Mapping, published the
“Special Issue on Meta-Analysis in Functional Brain Imaging.”
This issue included three methodology articles on ALE and the
analysis of meta-analysis networks?®?*? and twelve ALE meta-
analyses of human cognition and perception. Specifically, nine ALE
meta-analyses were presented on various cognitive tasks such as
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the Stroop task,* switching tasks,2’ the Wisconsin Card-Sorti
tasl.<,30 the n-back working memory task in healthy subjects?! mfl
schizophrenic subjects,®? object naming,®? phonological proce i
of Chinese characters, reading in Western and Eastern larI: ua SSH;’%
and fluent vs stuttered speech production.? In addition th%ee Igne;t,
fmalyses were published in the special issue on perceptu;ﬂ process a
including audition,” pain perception,®® and vision. Presenteil’
below are the highlights of the meta-analysis of the Stroop task y

26.3.1 Meta-Analysis of Stroop Interference Studies

.In the Stroop task, subjects view color names presented in varyin
ink colors and are asked to name the color of the ink, while igno};ing
tbe word.*’ In the congruent condition, the color names match thei%
displayed ink color. In the incongruent condition, the words are pre-
sented in non-matching ink colors (e.g. “blue” presented in red iik)
The Stroop task is widely used to study inhibition and attentionai
control since correct performance in color naming often competes
with the relatively automatic tendency to perform word reading
: Ar? ALE meta-analysis of all published neuroimaging stud‘ies
investigating the Stroop effect was performed to identify the regions
of concordance across the published set of Stroop papers in order to
Hioxe fully understand the detection of conflict and response selec-
t.1on in the human brain.® To reach this objective, a comprehensive
literature search was carried out using Medline to determine the
fMRI and PET Stroop studies that published Talairach or MNI coor-
dinates of activation locations. From this set of studies, the included
contrasts (Incongruent — Control) were filtered to eliminate non-
standard task variations (counting Stroop, emotional Stroop), and
f)nly include group activation data from normal subjects. This f,ilter-
ing isQIated 19 Stroop studies (13 fMRI and 6 PET) with 19 contrasts,
containing a total of 205 foci. A plot of these foci is presented on a
standard glass brain in Fig. 1(A).

This group of Stroop coordinates was then segregated by
response modality. The studies were parsed into two different
groups based on use of a button press response (manual Stroop;
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Fig. 1(A). Selected contrasts from the Stroop literature yielded a total of 205 foci,
which are viewed in Talairach space in the BrainMap database java-based appli-
cation Search & View. In this image, each color identifies a paper within the Brain-
Map environment and the number displayed along with each focus refers to the
experiment within the corresponding paper; the circles can be changed to different
symbols for identification purposes. Pooling the results of 19 experiments onto a
single brain resulted in a diffuse pattern of activation across all lobes, with some

clustering visually evident in the frontal lobes.

six studies) or a covert or overt speech response (verbal Stroop;
thirteen studies). Three different ALE maps were computed for all
Stroop studies, Stroop studies that required an overt or covert ver-
bal response, and Stroop studies that required a manual response
[Fig. 1(B)].

The ALE meta-analysis of all Stroop studies revealed high ALE
values in the limbic, frontal, and parietal lobes. The verbal Stroop
map revealed regions of high ALE values in the left inferior frontal
gyrus (IFG) near BA 44 and bilateral insula, two regions com-
monly involved in articulation. In contrast, the manual Stroop map
revealed a parietal involvement more extensive than seen in the ver-
bal Stroop and an absence of concordance in the speech production
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Fig. 1(B). ALE meta-analyses of the Stroop task were performed on renormalized
Talairach coordinates from all studies, from studies that utilized a verbal speech
response, and from studies that utilized a manu al button press response. ALE values
were computed at each voxel in the brain using a FWHM of 12 mm. Statistical
s.‘ignificance was determined using a permutation test of randomly generated foci
for 5000 permutations, corrected for multiple comparisons using the ffalse discovery
rate.>22 Thresholded ALE maps are viewed at a significance l‘c\'cl of p < 0.05. On
theright, the ALE map of the pooled Stroop foci is viewed in axial slices. On the left,
the ALE map of verbal (red) and manual (blue) Stroop foci is viewed as a composite
image (overlap = yellow) on a 3D brain surface.

areas observed in the verbal Stroop (BA 44 and insula). Clearly, while
the Stroop task is essentially a verbal task and it is reasonable to
assume that some form of covert vocalization occurs during the man-
ual Stroop, it can be seen in Fig. 1(B) that the two response modalities
display different activation patterns due to a stronger emphasis on
vocalization and articulation in the verbal as opposed to manual
Stroop task. When the manual and verbal Stroop ALE results are
viewed in a composite image, regions of overlap were observed in
the anterior cingulate, left inferior parietal lobule, and bilateral infe-
rior frontal junction. The inferior frontal junction is located between
the precentral gyrus and the inferior frontal gyrus, and is known
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to be involved during tasks of cognitive control.?’#! Based on these
results, these regions have been isolated as major components of the
network for response conflict resolution in the Stroop task.

26.4 ANALYSIS OF META-ANALYSIS NETWORKS
(RDNA AND FSNA)

As described above, ALE can be used to identify the network
involved in a given paradigm or behavioral domain; however, the
ALE methodology does not include a technique to evaluate the rela-
tionships between nodes in the identified network. In response to
this, Neumann ef al.2® published a method of investigating inter-
regional connectivity based on replicator dynamics, a strategy based
on the dynamics of competitive growth that is well established in
social and biological sciences. Neumann et al. proposed that this
replicator dynamics network analysis (RDNA) be used to isolate cor-
tical networks that are activated most often together across multiple
studies. The replicator dynamics approach can be used to identify
subordinate networks within a larger network (e.g. to separate a
perceptual subsystem from a motor subsystem in a cued-response
paradigm). This function is based on analysis of a co-occurrence
matrix, in which each element indicates how often a given pair of
activation maxima is found to be coactivated in a given study.?+?
Co-occurrence networks determined by ALE meta-analysis are
assumed to be the summation of subnets. The fractional contribution
of each subnet affects co-occurrence of the whole network.

Inan RDNA analysis, the ALE method is first used to identify the
regional nodes of activation from individual coordinates in multiple
studies. Next, the occurrence of each of these nodes in the included
studies is recorded. Third, the co-occurrence matrix is computed
for the activation nodes. Last, the replicator process is applied to
identify the dominant network.

Neumann et al.?® presented an RDNA analysis of the Stroop
task to illustrate their new method. In this example, the ALE
meta-analysis identified 15 activation nodes. The replicator process



l Angela R Laird, Jack L Lancaster and Peter T Fox

isolated five of these nodes to be the dominant network, includ-
ing the presupplementary motor area, left inferior frontal sulcus
extending onto the middle frontal gyrus, bilateral anterior cingulate
and the left inferior frontal junction. The replicator process assignec{
the highest connectivity weight to the right anterior cingulate node,
which was the second largest node and showed the second highest
number of co-occurrences. The highest number of co-occurrences
was found for the inferior frontal sulcus, which was assigned the
second highest connectivity weight, but was the smallest node in
the network. These results demonstrate that connectivity weight is
determined by the relationship between different activation nodes
and is a function of co-occurrence, the extent of the ALE clusters,
and the magnitude of the ALE scores.

The network analysis technique based on replicator dynamics
(RDNA) presented by Neumann et al.% introduced the first appli-
cation of meta-analysis data to network analysis Lancaster et al.?’
examined both RDNA and a similar method known as fractional
similarity network analysis (FSNA). Whereas the RDNA method
used by Neumann et al. was applied to determine the dominant
subset of nodes, the FSNA method determines the complete subsets
of the data using binary pattern matching. Lancaster et al. chose to
study both RDNA and FSNA on the pooled Stroop data set (19 stud-
ies with 205 foci) from the meta-analysis performed by Laird et al.?®
This dataset was similar to that used by Neumann et al., but included
six additional studies. This pooled Stroop dataset was first analyzed
using ALE, and yielded 13 nodes (p < 0.01). RDNA on this data set
reported a dominant network of only two nodes (anterior cingulate
and left inferior frontal junction), which contrasted from the five-
node network identified as dominant in Ref. 26. However, modifying
RDNA to return multiple maximal cliques, resulted in finding a five-
node maximal clique consistent with the five-node network reported
by Neumann et al.?® Applying FSNA to the same Stroop data set
revealed several important segregations of the data. The two cingu-
late clusters were parsed into different subnets. This is consistent
with the previous determination of somatotopy within the cingu-
late motor area;*® however, in the case of FSNA this parcellation into
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different subnets was done using the pooled Stroop data, and not by
performing separate ALE analyses based on response modality. Both
RDNAZ26 and FSNA? have proved to be interesting extensions of the
ALE meta-analysis method, and it is hoped that further investiga-
tion of these techniques will yield critical information concerning
meta-analysis networks of cognition and perception.

26.5 CONCLUDING REMARKS

The utility of the ALE meta-analysis method is well established,
and ALE has proved capable in illustrating differences in task stim-
ulus or response modalities,?*® baseline conditions,® and nor-
mal vs diseased subject groups.32364> However, the true potential of
connectivity analysis of meta-analysis networks remains yet to be
discovered. While establishing these function-location relationships
and uncovering areas of functional dissociation within the cortex has
been a primary focus of research, more investigators are progressing
from simple identification of network nodes towards studying the
interactions between brain regions Neumann et al.2® and Lancaster
et al.¥ provided a path forward in this direction using their respec-
tive methods of replicator dynamics network analysis (RDNA) and
fractional similarity network analysis (FSNA). Future work in this
area will certainly involve probing network connection from meta-
analysis data, perhaps using this information to inform networks for
structural equation modeling**® or dynamic causal modeling.*4”
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