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Abstract—We review several feature selection methods: 

Recursive Feature Elimination, Select K Best, and 

Random Forests, as elements of a processing chain for 

feature selection in a text mining task. The text mining 

task is a multi-label classification problem of label 

assignment; metadata that is usually applied to published 

scientific papers by expert curators. In the formulation of 

this classification task, a feature space that is dramatically 

larger than the available training data occurs naturally 

and inevitably. We explore ways to reduce the dimension 

of the feature space, and show that sequential feature 

selection does substantially improve performance for this 

complex type of data.  

Keywords: multi-label classification, text mining, feature 

selection, metadata annotation, hybrid feature selection 

I. INTRODUCTION 

In order to properly classify the published 

biomedical sciences research literature, it is essential to 

have automated systems that can correctly label the 

technical aspects of the published papers with 

appropriate metadata. This allows researchers to ask 

precise technical questions of this literature. Labels are 

essential as the use of simple keyword search does not 

sufficiently identify relevant papers [1]. Currently such 

labeling requires the time and attention of human 

scientific experts who are usually neither interested in 

carrying out the labeling task nor are they freely 

available to do it. As an example, we work with experts 

who label published scientific papers with metadata that 

identifies key aspects of the experimental designs, 

subject populations, and methods (among other things) 

used in the papers. This is part of their ongoing research 

that involves the construction of large-scale meta-

analytic reviews of the neuroscience literature. While 

they are interested in doing the labeling task for papers 

they use directly as input to their work, they are 

scientists, not curators, and have little direct interest in 

labeling papers they do not use. As part of their larger 

overall workload, it can take months to label just a 

hundred papers. Additionally, their work is really 

conducting the meta-analysis and literature review; in a 

more perfect scientific literature, the metadata would 

already be part of the publications. Our research 

program addresses this need, but using machine 

learning approaches to automate the process of 

assigning metadata based on the raw text of the 

scientific literature. 

The specific problem addressed in this work is how 

to preprocess the scientific vocabulary used in 

publications into a useful feature space for machine 

learners. The problem is two-fold. First: there is no pre-

existing, agreed-upon, and fixed vocabulary in use in 

the sciences that guarantees that important ideas are 

always expressed in identical terms. Second: the deeper 

ideas in research are not naturally expressed in simple 

“keyword” terms; they are concepts that require multi-

word explanations that contain and combine multiple 

underlying concepts. Our problem is to mine the 

scientific texts for the words that indicate these 

underlying concepts and then assign metadata labels 

that make these concepts explicit. Simple searching for 
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a fixed list of keywords will not suffice for this 

complex text structure. The metadata must create 

syntax to mark the specific semantic content in the 

texts. 

In this situation, it is tempting to remove only the 

usual stop words (short function words which express 

grammatical structure; e.g., propositions, pronouns, 

articles, and particles) for the language in question. 

However, this leaves a collection of features that is too 

large to use effectively as a starting point for applying 

standard text mining algorithms as many algorithms 

work better with smaller feature spaces [2]. This 

problem is particularly acute when the number of 

training examples is very small, as often happens in the 

case of expertly labeled documents used for supervised 

learning classification problems. This is an example of 

an 𝑛 ≪ 𝑝 (n much less than p) problem: any problem 

where the collection of training instances (𝑛) is much 

less than the number of features or parameters (𝑝) [3, 

4]. 

In particular, many types of high-quality data suffer 

from this 𝑛 ≪ 𝑝 phenomenon, while most methods in 

data mining were invented for situations where there is 

an abundance of relatively crude data. In our work, we 

have 3,606 unique words after stop word removal, but 

the number of training instances to be used in the text 

classification task is only 247. So our data has more 

than an order of magnitude more features than training 

instances (a factor of approximately 15). 

Our classification problem is inherently a “multi-

label” problem [5, 6]. This is a type of problem where 

each instance can be labeled with any possible 

combination of the labels available for the task. In 

recent work [7], we approached this problem by using a 

multi-instance multi-label (MIML) algorithm [8]. There 

we used principal component analysis (PCA) and 

vocabulary stemming to pre-process the data before 

classification [9-11]. It was shown that the PCA 

components, used as features, allowed a dramatic 

reduction in feature space dimension. However, as 

reported there, that may have been an artifact of the 

particular data used in that study. To address that issue, 

we use here a broader collection of data.  

We try the approach of reducing the original feature 

space directly. We consider a variety of feature 

selection and feature reduction strategies, and use each 

of these in various combinations, to prepare the data for 

classification. We use an off-the-shelf text classification 

method, a support vector machine (SVM) [12, 13]. To 

allow this binary classifier to be used for a multi-label 

problem, we use a problem transformation method, 

called binary relevance, to convert this problem to the 

multi-label context [5]. The main novelty in this 

approach is in combining the feature selection methods 

sequentially to improve their performance. 

II. METHODS 

A. Data Preparation and Preprocessing 

The training data are the text of the published 

abstracts of 247 human neuroimaging journal articles 

and their corresponding metadata labels. These 

metadata labels were created as part of the BrainMap 

database (www.brainmap.org) and were annotated 

using the standard set of Cognitive Paradigm labels 

(www.cogpo.org), identifying aspects of the 

experimental designs reported in each of the papers [6, 

14-16]. These labels were originally added to the 

BrainMap database by trained expert annotators, based 

on their reading of the entire text of each journal article. 

The classifiers developed here only use the partial 

information provided by the article abstract text, not the 

full article text; therefore we expect some crucial detail 

to be lost and this will be reflected in lower 

performance scores. 

The specific metadata we are using has been 

assigned to articles in previous work, primarily by one 

of the present authors (ARL). This careful expert 

assignment is used as a gold standard for training the 

classifier. The ultimate goal of this research is to 

develop fully automatic classifiers that can perform at 

levels competitive with human experts. This is essential 

as the classification task is both (1) dependent on 

significant expertise while also (2) being repetitive and 

boring; the former issue limiting the number of 

potential curators able to do the task, and the latter 

leading to potential errors and overall work 

dissatisfaction for the curators. 

In our experiments, there are eight label dimensions 

(label sets) and each dimension has multiple labels 

represented in our data: Paradigm Class Labels (PCL, 

48 labels), Behavior Domain Labels (BDL, 40 labels), 

Stimulus Type Labels (STL, 17 labels), Instruction 

Type Labels (ITL, 14 labels), Disease Labels (DL, 13 

labels), Response Type Labels (RTL, 9 labels), 

Stimulus Modality Labels (SML, 5 labels), and 

Response Modality Labels (RML, 5 labels). As this is a 

multi-label problem, each training instance may have 

more than one label. For instance, in the ITL dimension, 

which describes details of how research subjects 

receive instructions in cognitive neuroscience 

experiments, the average number of labels assigned 

across the 247 instances is 1.65 (mostly 1 or 2 labels 

per instance) and with a maximum of 6 labels assigned 

to any instance. Fuller details for most label dimensions 

can be found in [16] and a more complete description of 

this data set is available in [6]. 



 

First the stop words and punctuation were removed 

from the texts and the words tokenized using the 

Natural Language Tool Kit (NLTK; www.nltk.org) [9, 

17]. Each abstract is ultimately reduced to a count-

based bag-of-words vector representation. 

After the punctuation and stop word removal and 

tokenization the base vocabulary is 3,606 words. Before 

forming the word counts, we further reduce the number 

of words by using word stemming as a preprocessing 

step. This procedure maps morphological variants onto 

their common stems. We used NLTK for word 

stemming and lemmatizing. We used the Porter 

Stemmer and the WordNet Lemmatizer, both of which 

are parts of the NLTK Stem package. The Porter 

stemmer is not very aggressive and will leave many 

variants unchanged [10]. Additionally, we removed any 

words strictly less than length 3. The stems, along with 

any words left untouched by the stemming and other 

processes, constitute our vocabulary; i.e. these are the 

words for the word counting process. This combination 

of procedures reduced the feature dimension from 3,606 

to 2,317 words. 

This results in a final data matrix with 2,317 rows 

(one per word) and 247 columns (one per abstract; 

these are the count vectors) and with the counts of 

words present in each abstract populating the body of 

the matrix.  We use this as the input for the processes 

below.  Note that most abstracts are lengths from 100-

300 words, so these vectors are sparse; each vector will 

have less than 10% non-zero elements. 

B. Feature Selection Methods 

We use the following three feature selection 

methods as our basis: 

(1)  Recursive Feature Elimination (RFE; also 

called RFE-SVM), recursively prunes features 

according to each feature’s importance [18, 19]. 

Feature importance is defined here as the 

weight given to the feature by an SVM 

classifier. Feature importance is determined by 

sequentially re-training a SVM classifier and, at 

each step, removing less useful features, i.e. 

features below some threshold weight. The RFE 

process continues until the target number of 

features remains. 

(2) Select K Best (SKB) is a procedure that 

constructs the 𝜒2 (chi-square) statistic between 

each element of the feature space and each of 

the labels to determine which features are 

correlated with which labels [20]. Then it 

removes the least significant features, which are 

less likely to be useful in any classification task. 

Note that it rejects features with the smallest 𝜒2 

statistics, which is different from, but similar to, 

rejecting based on Pearson- or Spearman-type 

correlations; the 𝜒2  is more convenient as a 

one-sided, strictly positive measure [21, 22]. 

(3) Random Forests (RF) select features at random 

(with replacement) and group each subset in a 

random subspace [23-25]. It is known that some 

ensemble learning methods for classification or 

regression can be used as feature ranking 

methods if a relevant importance score can be 

defined. Here we set the number of trees to 10 

and record the percentage of trees in which a 

given features appears; this we use as the 

importance score. The averages of these scores 

for each feature order the features by 

importance, and this allows ranking of features, 

making elimination of less important features 

trivial. 

In previous work, various ways of combining 

feature selection techniques have been proposed. For 

instance, Li et al. [26, 27] show that a combination of 

feature scoring and ranking methods can outperform 

individual feature scoring when appropriate 

adjustments are made to the scores arising from the 

different methods (e.g. normalization, conversion to 

ranks).  In [28], Neumayer et al. show the results of 

various combinations of feature selection methods. The 

individual methods they have used include document 

frequency, information gain, GSS-Coefficient (a variant 

on the 𝜒2 statistic, see [29]), among others. While [28] 

does not show a distinct improvement in performance 

over individual feature selection methods, [30] does. In 

this latter study, simple strategies based on 

mathematically combining ranking scores (the 𝜒2  in 

most cases) creates better feature selection evaluation 

over individual scores. There is, therefore, evidence of 

improvement with combined methods, but 

simultaneously no clear winning method across all data 

sets. Based on this work, we propose to explore 

whether combinations of our feature selection methods 

can improve performance over the use of single 

methods. 

Our primary interest is in the RFE and SKB 

methods, as these are the most heavily used methods in 

prior work. We tried using them both singly, in 

sequence, and in both possible orders. The first method 

in a sequence selects a subset of the original 2,317 

words, and then the second selects a smaller subset 

using the output of the first algorithm as input. We then 

used RF as a classifier to select feature subsets with the 

procedure described above. Because RF generates 

random subspaces, it was not used as the first method 

for feature selection [25]. This is due primarily to the 

randomization (with replacement) and missing features 

from the original feature space.  However, RF can be 
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used efficiently after either of the other methods, or 

their combination. 

C. Multi-Label Classification and LinearSVC 

One approach to the multi-label classification 

problem is to convert a multi-label classification task 

into a set of single-label or binary classification tasks, 

and there are a variety of ways to do this [5, 31, 32]. 

One method, binary relevance, decomposes multi-

label problems with n labels into n independent binary 

classification tasks [5, 6, 33]. In this method labels are 

predicted independently and so the label dependencies 

are ignored completely [34]. However, ignoring 

dependence is usually not a substantial detriment to 

performance, whether it is done to the features or the 

labels, in general text classification [35, 36]. In order to 

use binary relevance method, we implement One-

versus-the-Rest (OvR) multi-label strategy on our 

training data [21]. In this method, an individual 

classifier is built for each label to be predicted, and the 

entire data set is partitioned into cases with the label 

and cases without the label. The partition is done 

without respect to any of the other labels. 

Binary relevance is a meta-method; a procedure for 

decomposing a multi-label problem into a set of binary 

problems. As such we still need to specify a classifier to 

use with the decomposition to complete the 

classification task. We use the LinearSVC (linear 

support vector classifier) implementation of the linear 

support vector machine in Scikit-Learn [17]. The 

classifier is used with settings determined in previous 

research with the same data [6]. This standard classifier 

is based on the LIBLINEAR implementation [37]. 

III. RESULTS 

     In our performance analysis, we considered 8 

possible methods and combinations of methods.  Our 

target goals were to reduce the 2,317 starting features 

by at least an order of magnitude, so we considered 

reduced feature sets of sizes: 50, 100, 150, 200, and 250; 

in some cases these values are the actual final feature 

set sizes, in other cases these are nominal (maximum 

possible) sizes, see below for more details. 

 A. Feature Selection Methods and Chains of Methods 

In this section, we implemented three feature 

selection methods on our training data: RFE, SKB and 

RF. We evaluated the RFE and SKB individually and 

combined them as sequential approaches, as well as 

using each of them as a preprocessing step for RF. 

The methods and combinations are as follows:  

(1) RFE – The RFE method is used as the only 

feature selection method. It was run five times, 

selecting either 50, 100, 150, 200, 250 features 

and these were used as input for the BR Linear 

SVC classifier. 

(2) SKB – The SKB method is used as the only 

feature selection method. The details are as for 

the RFE method. 

(3) RFE(300)→SKB – First, the RFE method 

selects the 300 most important features; then 

from these 300 features, SKB selected the 50, 

100, 150, 200, 250 most important of these.  

These five final feature sets are used for the 

classification as above. 

(4) SKB(300)→RFE – The same as the previous 

procedure, but in the other order. 

(5) RFE(50-250)→RF – In this condition, RFE 

selects a fixed size subset of the original 

features; then RF is applied to this subset. 

Because of the random nature of RF, the final 

sizes of the feature subsets it selects are variable; 

the nominal sizes (produced by the RFE step) 

are reported in Fig. 1. The actual final feature 

sets were all much smaller, ranging from 14 to 

73 features after the RF step; varying by label 

dimension (Fig. 2). 

(6) SKB(50-250)→RF – This is the same as the 

previous procedure, except with SKB as the 

first feature selector. Here the actual number of 

features produced by the RF step ranged from 7 

to 68; these also varied by dimension. 

Fig. 1 shows classification performance on the eight 

label dimensions (see II.A. for the identifiers of label 

sets) using the above six feature selection methods and 

combinations.  

The results presented are 10-fold cross-validated F1-

Micro scores, see [6, 7] for details of the cross-

validation procedures and [6] for more on F1-Micro as 

a performance measure. Binary measures of 

performance are not sufficient for multi-label 

classification per se; they can be applied to each label 

individually, but cannot be used for overall 

performance. We use the F1-Micro score which is a 

balanced combination of precision (also called positive 

predictive value; the proportion of relevant retrieved 

labels to the total set of retrieved labels) and recall 

(sensitivity; the proportion of retrieved relevant labels 

relative to relevant labels available to be retreived). F1 

varies between 0 and 1, with scores closer to 1 being 

better. Micro averaging the F1 score, across test or 

training instances, allows for better comparisons across 

data sets; however more complex data sets will 

intrinsically have lower F1 scores. 



 

The results in Fig. 1 show there is no profound 

difference among the feature selection methods when 

applied to our training data. Both RFE and 

SKB(300)→RFE do better overall than the other 

methods, but most methods show some improvement 

over the same classification done with the entire 

original feature space as input.  (See Table I and the 

discussion of overall results in section III.C below for 

more on best performance and performance using all of 

the features, without any feature selection being 

applied.) 

The last two conditions, SKB(50-250)→RF and 

RFE(50-250)→RF are shown in Fig. 1 in terms of 

nominal (input) numbers of features.  For comparison, 

Fig. 2 shows the same results plotted in terms of actual 

numbers of features.  The main thing to note here is that 

the actual number of features in use in either of these 

conditions is always less than about 75; see the 

descriptions of the methods above for maximum and 

minimum values. 

B. Common Features Selected by Multiple Methods 

Because each feature selection method chooses 

features by different statistical tests, it is reasonable to 

expect that the selected features might differ. However, 

features chosen by multiple feature selection methods 

might also be more reliable. We considered two 

different combinations of this type: 

(7) Common Features (RFE&SKB) – we first 

selected 50, 100, 150, 200, 250 features using 

RFE and corresponding numbers from SKB 

and then paired up the corresponding sets. We 

obtained the intersection of the sets, and the 

features falling into the intersection were used 

as features for training the LinearSVC 

classifier. 

(8) Common Features (RFE&SKB&RF) – Same 

as the previous method, but also with the top 

ranked 50, 100, 150, 200, 250 features from RF 

and a three-way set intersection. 

In Fig. 3, the x-axis is the number of features 

(resulting from the set intersections) and y-axis is the 

F1-Micro score obtained by the classifier using the co-

occurrence feature sets. The left-hand side shows the 

co-occurrence features in five feature sets (50-250) that 

are selected by RFE&SKB; while, the right hand side 

shows the co-occurrence features from the three feature 

selection methods, RFE&SKB&RF. In general, the 

performance improves as the number of number of 

common features increases. This figure is plotted in 

terms of the actual number of features used for the 

classifier, not in the nominal 50-250 range.  It is 

important to note the number of features in these 

conditions is much smaller than most other conditions 

presented here; in the left panel the maximum number 

of common features is 117, on the right it is 51. 

 
Fig. 1. Feature Selection Methods on Eight Label Dimensions 

 
 

 
Fig.2. Feature Selection Methods Using RF 

 



 

Performance at the largest number of features in Fig. 3 

is in the general range of performance in the previous 

figures, but there is no obvious improvement over the 

previous results.  On only one label dimension (PCL or 

Paradigm Class Labels) did this collection of methods 

achieve better performance than that seen in other 

conditions. See Table I below.  It is worth noting that 

PCL is a conceptually complex dimension compared to 

most of the others. 

C. Overall Performance 

Table I summarizes the overall results of the study, 

including a major point that may not be clear from the 

presentation above: feature selection does improve 

performance overall.  In Table I, the first row shows the 

F1-Micro score obtained by the classifier when applied 

to the entire feature space of 2,317 words (“All 

Features”) without any feature selection.  The second 

row shows the best F1-Micro score obtained across all 

methods applied above. The third row shows the 

improvement in F1 score due to feature selection. In 

every case, at least one of the feature selection 

strategies tried above was able to provide a smaller 

feature set to the classifier that also improved the 

classifier’s performance; and often it is a dramatic 

improvement. The smallest improvement is 0.0519 F1-

Micro units (highlighted) in the disease label (DL) 

dimension. This dimension is generally “easier” for 

classifiers to do well in solving, as the disease labels 

themselves are often explicit features present in the 

input text.  The best improvement is in the stimulus 

type (STL) dimension, with an improvement of 0.2251 

F1-Micro units. Note also that the behavioral domain 

labels (BDL) and paradigm class labels (PCL) both 

show between 0.10 and 0.14 F1-Micro units of 

improvement.  Conceptually, these are the hardest 

dimensions, depending on sometimes complex 

combinations of features in the input text to represent 

these labels’ presence or absence.  See [6] for more 

details. The last two rows give the winning method and 

the number of features (actual) needed to achieve the 

score. In general, RFE alone and RFE preceded by 

SKB achieved the best results. No more than 200 

features were used. 

Another point to consider in the table: if we set an 

F1-Micro score of 0.50 as a conservative cut-off for the 

usefulness of a classifier (see [6] for a discussion of this 

point), we find that using the original feature space we 

only have useful classifier results in 4 out of 8, or half, 

of our cases. With feature reduction, whether it is 

hybrid or just single methods, all 8 of the label 

dimensions now have useful classifier results, with 6 of 

the 8 being well above this mark. 

 IV. CONCLUSIONS 

This paper presents an approach to substantial 

feature reduction in large complex textual feature 

spaces using standard methods both alone and in 

combination. The overall result shows that one standard 

method, RFE, used alone often is the best choice for 

feature reduction (here it has the best performance in 5 

of 8 cases). However, combining methods produces a 

better result in three cases, including two label 

dimensions with the most complex conceptual structure 

(BDL and PCL).  Additionally, a combined method 

produced the maximal improvement in one dimension 

(DL) where there was very little room for improvement. 

These novel results encourage the continuing 

exploration of hybrid feature reduction methods in the 

future for other data sets. 

Our research program focuses on the 𝑛 ≪ 𝑝 

problem, that is, the problem of classifying very small 

quantities of very high-quality, high-dimensional data. 

In this case, we have very expensive to produce data 

that can only come from intense expert work. This type 

of data will always have an imbalance between n and p, 

that is, there will always be many more features than 

training instances. 

Performance of the classification algorithm on the 

raw feature space is not very good, but with several 

combinations of feature selection methods, the 

performance was improved substantially. We are 

currently developing these techniques using both more 

data (a larger sample of the BrainMap database), 

different types of labels with different underlying 

structure and complexity, and using the full-text of the 

scientific articles rather than just the text of the 

abstracts. It should be noted that this last goal, the using 

of full text, will actually make the 𝑛 ≪ 𝑝  problem 

worse: even with a larger corpus of expert assigned 

labels, the number of features will dramatically increase 

if we use the full text of the scientific papers. With this 

sort of data, this imbalance is a permanent feature of the 

data. 

 
Fig.3. Co-occurrence features among eight label dimensions. 



 

Currently, text annotation takes a great deal of time 

and effort by the limited number of humans available 

with the requisite knowledge to do the task. While the 

production of scientific knowledge has continued to 

increase, the availability of tools to manage this 

knowledge is still not sufficiently developed. This is a 

substantial problem with connections both to deeper 

issues in machine learning and also to interesting 

technical problems. 
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