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Abstract

Obsessive-compulsive disorder (OCD) is a common, heritable and disabling neuropsychiatric disorder. Theoretical models suggest that
OCD is underpinned by functional and structural abnormalities in orbitofronto-striatal circuits. Evidence from cognitive and
neuroimaging studies (functional and structural magnetic resonance imaging (MRI) and positron emission tomography (PET)) have
generally been taken to be supportive of these theoretical models; however, results from these studies have not been entirely congruent
with each other. With the advent of whole brain-based structural imaging techniques, such as voxel-based morphometry and multivoxel
analyses, we consider it timely to assess neuroimaging findings to date, and to examine their compatibility with cognitive studies and
orbitofronto-striatal models. As part of this assessment, we performed a quantitative, voxel-level meta-analysis of functional MRI
findings, which revealed consistent abnormalities in orbitofronto-striatal and other additional areas in OCD. This review also considers
the evidence for involvement of other brain areas outside orbitofronto-striatal regions in OCD, the limitations of current imaging
techniques, and how future developments in imaging may aid our understanding of OCD.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Obsessive-compulsive disorder (OCD) is a chronically
debilitating disorder with a lifetime prevalence of 2-3%
(Robins et al., 1984; Karno et al., 1988; Weissman et al.,
1994). It is characterised by two sets of symptoms:
obsessions, which are unwanted, intrusive, recurrent
thoughts or impulses that are often concerned with themes
of contamination and ‘germs’, checking household items in
case of fire or burglary, order and symmetry of objects, or
fears of harming oneself or others and compulsions, which
are ritualistic, repetitive behaviours or mental acts carried
out in relation to these obsessions e.g., washing, household
safety checks, counting, rearrangement of objects in
symmetrical array or constant checking of oneself and
others to ensure no harm has occurred. These symptoms
are time-consuming and cause marked distress and
impairment (DSM-IV; American Psychiatric Association,
1994). Suppression of compulsive behaviours leads to high
levels of anxiety, and OCD is chronically disabling within
the realms of both social and occupational functioning
(Leon et al., 1995; Koran et al., 1996). OCD was named by
the World Health Organisation in 1996 as one of the top 10
causes worldwide of ‘years lived with illness-related
disability” (Murray and Lopez, 1996), indicating its serious
impact on quality of life. The burden of OCD at a
population level is considerable; e.g., a study in the US
estimated the economic cost of OCD to be $8.4 billion in
1990 (DuPont et al., 1995).

Relatively little is known about the neurobiology and
aetiological origins of OCD (Chamberlain et al., 2005).
There is strong evidence that OCD has a genetic basis, with
levels of monozygotic twin concordance reported to be
between 63% and 87%, and first-degree relatives showing

increased rates of OCD of 10-22.5% compared with the
normal population risk of 2-3% (Inouye, 1965; Carey and
Gottesman, 1981; Rasmussen and Tsuang, 1984; Pauls
et al., 1995; Nestadt et al., 2000b; Hanna et al., 2005).
Additionally, linkage studies have pointed to a locus on
chromosome 9 (though encompassing a large number of
genes) (Hanna et al., 2002; Willour et al.,, 2004) and
complex segregation analysis suggests both Mendelian
dominant forms of transmission and polygenic contribu-
tions (Cavallini et al., 1999; Nestadt et al., 2000a).
However, to date, although there are intriguing findings
concerning, for example, the serotonin transporter gene
(SERT) (Hu et al.,, 2006), candidate gene association
studies have not yet provided sufficient consistent evidence
to confirm specific gene involvement in OCD. This may be
partly due to heterogeneity within the clinical diagnostic
category of OCD—it is hoped that this may be circum-
vented by the use of endophenotypic strategies in the future
using objective and reliable measures, such as might be
taken from neuroimaging (Menzies et al., 2007).

In this review, we focus on the degree of consistency
between studies and the extent to which findings have been
replicated. It is important to consider at the outset that
inconsistent findings do not necessarily indicate a lack of
validity of the model under investigation, but instead could
reflect confounding factors resulting from study design.
For example, not all studies of OCD control rigorously for
experimental factors such as the age, 1Q, handedness and
gender of participants. In the context of imaging in
particular, this may be of considerable importance since
it is evident that age has marked effects on brain structure
(Ge et al., 2002; Lemaitre et al., 2005; Smith et al., 2007).
Another key difficulty in OCD is that many patients
have co-morbidities, in particular depression or anxiety



L. Menzies et al. | Neuroscience and Biobehavioral Reviews 32 (2008) 525-549 527

disorders, which would be predicted to have confounding
effects upon cognitive and imaging findings (Chamberlain
and Sahakian, 2006; see Section 4.3.2). For example, as
many as one-third of OCD patients have concurrent major
depressive disorder (MDD) at the time of evaluation, and
the number suffering from a depressive episode at some
point over their lifetime is estimated to be considerably
higher (Rasmussen and Eisen, 1992; Weissman et al., 1994).

The current dominant model of OCD focuses on
abnormalities in cortico-striatal circuitry, with particular
emphasis on the orbitofronto-striato-thalamic circuits
(Saxena et al., 1998, 2001a; Graybiel and Rauch, 2000).
This review aims to examine the neurobiological founda-
tions of this influential model of OCD and to assess how
well it is supported by evidence from neuropsychological
and neuroimaging studies. We consider additional regions
which have been implicated in OCD by cognitive and
imaging studies, including recent findings from whole
brain-based structural imaging studies using techniques
such as voxel-based morphometry (VBM) and multivoxel
analysis. Finally we propose an updated model for OCD
that includes structural brain abnormalities not limited
exclusively to orbitofronto-striatal circuitry, which may
account more comprehensively for cognitive and imaging
findings in OCD.

2. The orbitofronto-striatal model of OCD
2.1. Anatomical evidence for involvement

Early work based on anatomical studies in primates
documented the existence of several relatively specialised
brain circuits, the so-called ‘fronto-striatal loops’, orga-
nised in parallel and linking the basal ganglia to the frontal
cortex (Alexander et al., 1986). It was suggested that these
circuits each play a relatively specific functional role, based
on the connections within each circuit to relatively discrete
areas of frontal cortex. The existence of a lateral
orbitofrontal loop was proposed, involving projections
from the orbitofrontal cortex (OFC) to the head of the
caudate and ventral striatum, then to the mediodorsal
thalamus via the internal pallidus and finally returning
from the thalamus to the OFC. More recently, researchers
have modified the model of this circuit to include the
hippocampus, anterior cingulate and basolateral amygdala,
all of which are extensively connected with the OFC,
and ascribed an affective function to this circuit, based on
our current knowledge of the functional significance of
these limbic regions in affective states and emotional
perception (Lawrence et al., 1998; Phillips et al., 2003)
(see Fig. 1).

2.2. Orbitofrontal cortical function
Evidence from lesion studies in animals and humans

strongly suggests that the OFC plays a crucial role in
emotional and motivational aspects of behaviour (Rolls,

The affective loop
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Fig. 1. Diagram of the affective orbitofronto-striatal circuit. Dysfunction
in this circuit is proposed to underlie OCD. After Lawrence et al. (1998).

2004; Elliott and Deakin, 2005; Kringelbach, 2005). This
was famously illustrated by the case of Phineas Gage, a
railway workman who sustained OFC damage in a blasting
accident involving a metal rod, and subsequently demon-
strated profound changes in emotional behaviour (Harlow,
1868). More recent studies have again shown that patients
with orbitofrontal lesions consistently show behavioural
changes relating to inappropriate affect, disinhibition and
poor decision-making (Eslinger and Damasio, 1985;
Bechara et al., 1994; Damasio et al., 1994).

Functional imaging studies have provided evidence
supporting a role for the OFC in ascribing and monitoring
changes in reward value, including awareness of the
anticipation of expected rewards and the probability such
rewards will occur (Tremblay and Schultz, 1999, 2000;
Hikosaka and Watanabe, 2004). Further work has
suggested that medial and lateral regions of the OFC
may have dissociable functions, with the lateral OFC being
especially likely to be activated when a response previously
associated with reward has to be suppressed, indicating it
may play an inhibitory role (Elliott et al., 2000).

In agreement with these imaging findings, orbitofrontal
lesions in animals and humans lead to reward-related
learning deficits in tasks such as reversal learning
(McEnaney and Butter, 1969; Jones and Mishkin, 1972;
Rolls et al., 1994). It is suggested that impairments in
reversal learning reflect an inability to detect alterations in
reinforcement contingencies, i.e., changes in the motiva-
tional value of stimuli, and to then modify behaviour
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accordingly. It has also been argued that the OFC is
important in inhibiting previously important, but now
inappropriate responses, which would also lead to task
impairments following a reversal of reinforcement con-
tingency (Schoenbaum et al., 2002; Chudasama and
Robbins, 2003). The neuropsychological evidence for
orbitofrontal function also suggests this area is necessary
for completion of reversal learning tasks and decision-
making tasks which require an assessment of the reward
value of possible options (Clark et al., 2004; Elliott and
Deakin, 2005).

2.3. Orbitofronto-subcortical circuitry in OCD

The cortico-striato-thalamic circuit involving the OFC
has repeatedly been implicated in the neuropathology of
OCD; for review see Saxena (2003). Early positron
emission tomography (PET) studies measuring brain
function via cerebral glucose metabolism showed signifi-
cantly elevated metabolic rates in the whole cerebral
hemispheres, the heads of the caudate nuclei and the
orbital gyri in patients with OCD (Baxter et al., 1987,
1988). In addition, the hypermetabolism in the orbital gyri
was still present in patients after controlling for global
differences in hemisphere metabolism. These findings have
been replicated for the OFC in PET studies using both
resting and symptom provocation designs (Nordahl et al.,
1989; Swedo et al., 1989; Sawle et al., 1991; McGuire et al.,
1994; Rauch et al., 1994; Cottraux et al., 1996), though it is
of note that some studies have not found OFC hyperme-
tabolism in OCD (Martinot et al., 1990; Perani et al., 1995;
Busatto et al., 2000; Saxena et al., 2001b). These
inconsistencies between studies with regard to orbitofrontal
metabolism could be due to demographic differences in
sample groups across studies, for example, in gender,
handedness or 1Q; and different thresholds for exclusion of
co-morbidities, for example, many studies have included
patients with a diagnosis of depression or other psychiatric
disorders e.g., Swedo et al. (1989). For a summary of
findings from PET studies comparing OCD patients and
healthy controls see Table 1 and the meta-analysis by
Whiteside et al. (2004), which reported consistent abnorm-
alities between patients and controls in the orbital gyrus
and the head of the caudate nucleus.

Further evidence for OFC involvement in OCD comes
from the finding that treatment with selective serotonin
reuptake inhibitors (SSRIs), a current first-line treatment
for OCD (though cognitive therapy is also effective), has
been shown to be associated with a down-regulation of
SHT-1D autoreceptors in the OFC in animal studies.
Moreover, this down-regulation occurs over a time period
of 8 weeks, compatible with the time course for therapeutic
effects of SSRIs in OCD (el Mansari et al., 1995; Bergqvist
et al., 1999). However, our understanding of the role of
serotonin in OCD is complicated by the fact that
approximately 50% of patients with OCD do not respond
to SSRIs (Greist et al., 1995). Additionally there is indirect

evidence for a role of other neurotransmitters in OCD,
such as dopamine (Denys et al., 2004). For example
dopamine D2 receptor antagonists have been used with
some success to augment the effects of SSRIs in treating
OCD (Westenberg et al., 2007).

Findings from PET studies have been less consistent for
the caudate, particularly once measures have been normal-
ised to a reference value, e.g., the cortical mean, to correct
for global metabolic differences between groups. A review
of this literature found that whereas increased function in
the frontal cortex was evident in OCD, the available
structural and functional neuroimaging literature did not
consistently verify dysfunction of the caudate in the
disorder (Aylward et al., 1996).

However, there is indirect evidence for basal ganglia
involvement in OCD from findings that patients who suffer
focal lesions in the striatum or the area it projects to, the
pallidum, often then exhibit striking obsessive-compulsive
behaviours (Rapoport and Wise, 1988; Laplane et al.,
1989). Additionally the ventral caudate has been shown to
be a promising site for deep brain stimulation treatment of
refractory OCD (Aouizerate et al., 2004). Furthermore
there is an emerging literature of striatal cognitive
dysfunction in OCD, for example in implicit learning
(Rauch et al., 2007). It has been suggested that discrepan-
cies in basal ganglia findings in OCD may have resulted
from heterogeneity within the disorder both in terms of
diagnostic classification and the underlying brain pathol-
ogy (Saxena, 2003; see Section 4.1).

There are also numerous functional magnetic resonance
imaging (fMRI) studies of OCD investigating brain activity
during symptom provocation and executive function
paradigms, both in cohorts of patients alone, and in case-
control studies comparing OCD patients with healthy
volunteers. Previous reviews of OCD have detailed
such studies in narrative/tabular form (Saxena, 2003;
Friedlander and Desrocher, 2006), indicating support for
orbitofronto-striatal abnormalities in OCD, However, it is
often difficult to directly compare fMRI studies due to
differences in anatomical labelling systems and localisation
methods. Despite the wide range of paradigms employed
by these studies, we wanted in some way to synthesise this
large body of literature, and to test for any anatomical
commonality across regions which have been reported to
show abnormal activation (either increased or decreased) in
OCD patients compared with healthy controls. A quanti-
tative voxel-level meta-analysis was performed on fMRI
case-control studies of OCD using activation likelihood
estimation (ALE) software. In ALE, a group of studies is
tested for concordance by modelling each reported focus of
activation as the centre of a Gaussian probability distribu-
tion. These are then summed to create a statistical map
that estimates the activation likelihood, as determined
by the whole group of studies, for each voxel across the
whole brain. Studies were included if they reported
coordinates from contrasts assessing activation differences
between OCD patients and healthy controls during task
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performance (Shapira et al., 2003; Ursu et al., 2003;
Cannistraro et al., 2004; Mataix-Cols et al., 2004;
Fitzgerald et al., 2005; Maltby et al., 2005; Nakao et al.,
2005a; Schienle et al., 2005; van den Heuvel et al., 2005;
Viard et al., 2005; Remijnse et al., 2006; Lawrence et al.,
2007; Rauch et al., 2007; Roth et al., 2007; Yucel et al.,
2007). Studies not directly assessing case-control activation
differences between patients and healthy volunteers were
not included. A full description of the method can be found
elsewhere (Turkeltaub et al., 2002; Laird et al., 2005c).
Briefly, the spatial normalisation template was noted for
each study and coordinates were then automatically
transformed into a single standard space template (Talairach
and Tournoux, 1988) using the icbm2tal transform
(Lancaster et al., 2007). The studies were then inserted
into a database in BrainMap (Fox and Lancaster, 2002;
Laird et al., 2005b) for further analysis. Each included
focus was blurred with a kernel width (FWHM) of 12 mm,
and the ALE statistic was computed for every voxel in the
brain. Statistical significance was determined by a permu-
tation test corrected for multiple comparisons; 5000
permutations of randomly generated foci were performed,
using the same smoothing kernel and the same number of
foci used in computing the ALE values. The final ALE
maps were thresholded at p<0.05 (FDR-corrected) and
overlaid onto a template generated by spatially normalising

a

the ICBM template to Talairach space (Kochunov et al.,
2002; Laird et al., 2005a). To our knowledge this is the first
such meta-analysis of fMRI data of OCD.

The results of this meta-analysis (Fig. 2 and Table 2)
provide clear support for abnormalities of orbitofronto-
striatal regions in OCD. However, there are also consistent
foci of activation abnormalities in lateral frontal, anterior
cingulate, middle occipital and parietal cortices and
cerebellum, suggesting that more distributed large-scale
brain systems may be involved in OCD. However, it must
be borne in mind that combining studies using many
different paradigms is an oversimplification, justified by the
desire to know overall if there are consistent abnormalities
in OCD, but troubled by the difficulty of interpreting what
this activation might mean in terms of related cognitive
function on task performance. Future meta-analysis of
fMRI data on OCD will seek to address this issue of task
heterogeneity in more detail.

2.4. How might deficits in the regions within this fronto-
striatal circuit relate to the expression of OCD symptoms?

The precise relationship between OCD symptom expres-
sion and dysregulation of the orbitofronto-striatal circuit
has yet to be well-characterised. Graybiel and Rauch
(2000) have put forward a cortico-basal ganglia model of

Fig. 2. Results from a quantitative voxel-level meta-analysis of fMRI studies reporting case-control differences for OCD across a range of paradigms:
(a) areas where activation was greater in OCD patients than healthy controls (p <0.05) and (b) areas where activation was greater in healthy controls than
OCD patients (p<0.05). R and L markers denote side of brain, numbers denote z dimension of each slice in MNI space. See Table 2 for full details

of anatomical coordinates.
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Table 2

L. Mentzies et al. /| Neuroscience and Biobehavioral Reviews 32 (2008) 525-549

Significant foci of case-control abnormalities in fMRI studies of OCD from an ALE meta-analysis

Cluster ~ Volume (mm®  Weighted centre Maximum ALE maxima and submaxima Region/approximate BA
ALE value
X Y VA X Y Z
Activation in OCD patients> activation in healthy controls
1 4912 3.0 22.8 31.0  0.0080 -2 14 34 L anterior cingulate BA 32
0.0073 0 32 18 L anterior cingulate BA 32
0.0069 6 28 34 R medial frontal gyrus BA 6
0.0064 8 18 38 R anterior cingulate BA 32
2 2960 —44.8 29.5 —0.4  0.0094 —46 36 2 L inferior frontal gyrus BA 45
0.0061 —44 22 -6 L inferior frontal gyrus BA 47
3 1064 22.1  —158 =129 0.0062 22 —16 —14 R parahippocampal gyrus BA28
4 888 2.1 —3.8 15.6  0.0066 4 —4 16 R thalamus
5 768 —-27.0 —479 49.9  0.0078 —28 —48 50 L parietal (precuneus) BA 7
6 704 62 =211 32 0.0074 6 -22 4 R thalamus
7 648 —404 —64.2 4.5  0.0069 —42 —64 4 L mid occipital gyrus BA 37
8 640 322 10.1 7.8 0.0074 32 10 8 R claustrum
9 592 433 21.1 —4.8  0.0059 44 22 —6 R inferior frontal gyrus BA 47
10 440 8.1 10.0 13.8  0.0060 8 10 14 R caudate
11 360 —16.1 3.6 —10.0  0.0058 —16 32 —10 L medial frontal gyrus BA 10
12 320 12.6 42.5 0.6 0.0059 12 42 0 R anterior cingulate BA 32
13 312 —-0.6 —4438 18.1  0.0059 -2 —44 18 L posterior cingulate BA 30
14 304 24.7 20.7 =7.7  0.0057 24 20 -8 R claustrum
15 288 —16.9 12.3 43.8  0.0058 —18 12 44 L medial frontal gyrus BA 32
16 256 251  —16.8 54.8  0.0058 24 —18 56 R precentral gyrus BA 6
Activation in healthy controls> activation in OCD patients
1 1920 —26.3 17.9 —2.8  0.0048 -20 16 —6 L putamen
0.0048 —24 16 -2 L putamen
0.0044 —34 18 -2 L inferior frontal BA 47
0.0041 -32 18 10 L insula BA 13
2 1864 —6.2 20.7 36.7  0.0061 —6 22 38 L anterior cingulate BA 32
3 928 5.3 13.6 9.6  0.0071 6 14 10 R caudate
4 624 32,5 47.5 2.6 0.0053 32 48 2 R inferior frontal BA 44
5 496 0 =794  —15.7  0.0048 0 —80 —16 R cerebellum
6 280 —24.5 —-32 =184 0.0041 —24 -8 —16 L parahippocampal gyrus/amygdala
0.0041 —24 2 -20 L uncus BA 28

Abbreviations: L, Left; R, Right; BA, Brodmann area.
Talairach coordinates are reported.

OCD based on findings that the basal ganglia influence
both motor pattern generators in the spinal cord and
brainstem as well as putative ‘cognitive pattern generators’
in the cerebral cortex. They suggest that activity in fronto-
striatal loops may be involved in establishing cognitive
habits, just as they are in the development of motor habits.
Saxena et al. (1998, 2001a) have explored this model
further, proposing that OCD is mediated by an imbalance
between the direct (excitatory) and indirect (inhibitory)
pathways within this circuit, which leads to emergence of
obsessive-compulsive behaviours. Multiple tiers of evidence
implicate the OFC in the representation of rewards and
punishments (O’Doherty et al., 2001; Murray et al., 2007),
in anxiety and emotional processing (Zald and Kim, 1996b;
Kalin et al., 2007) and in inhibitory control (Elliott et al.,
2000). Since compulsions are classically posited to reduce
anxiety, and suggest underlying inhibitory deficits (Cham-
berlain et al., 2005), it is plausible that OFC dysfunction
plays an important role in the manifestation of OCD
symptoms. Indeed, PET studies show that OFC activity in

OCD patients is increased compared to controls in the
resting state (see Section 2.3 and Table 1) and furthermore,
that this normalises following successful treatment (Saxena
et al., 1999).

3. Evidence from cognitive studies of OCD

There are interesting paradoxes when considering sup-
port for the orbitofronto-striatal model from cognitive
studies of OCD. Below, consistent findings of impairment
in response inhibition and attentional set-shifting are
contrasted with inconsistent reports on decision-making.
Deficits in spatial working memory (van der Wee et al.,
2003) and implicit learning (Rauch et al., 2007) have also
been reported.

3.1. Response inhibition

Using objective computerised neuropsychological tests,
several studies have reported response inhibition deficits in
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OCD, using tasks such as go/no-go and stop-signal
reaction time (SSRT) which examine motor inhibitory
processes, and also the Stroop task, a putative test
of cognitive inhibition (Hartston and Swerdlow, 1999;
Bannon et al., 2002, 2006; Penades et al., 2005, 2007;
Chamberlain et al., 2006, 2007b). For example, response
inhibition deficits have been reported in OCD patients
when performing the SSRT, which measures the time
taken to internally suppress pre-potent motor responses
(Chamberlain et al., 2006). Unaffected first-degree relatives
of OCD patients are also impaired on this task compared
with unrelated healthy controls, suggesting that response
inhibition may be an endophenotype (or intermediate
phenotype) for OCD (Chamberlain et al., 2007b; see
Section 5). Interestingly, performance of the SSRT is
thought to be critically dependent upon an intact right
inferior frontal gyrus in patients with frontal lesions, but
not correlated with the extent of damage to the right
orbitofrontal gyrus (Aron et al., 2003, 2004). However,
functional neuroimaging studies of motor inhibition have
generally identified a more extensive system of regions
including orbitofrontal, anterior cingulate, dorsolateral
and medial frontal, temporal and parietal cortices, the
cerebellum and the basal ganglia (Godefroy et al., 1996;
Humberstone et al., 1997; Garavan et al., 1999; Rubia
et al., 1999, 2000, 2001la, 200lc; Horn et al.,, 2003).
Notably, many of these areas have not yet been targets
of investigation by neuroimaging in OCD and so the
existence of structural abnormalities in these regions in
OCD is unknown.

3.2. Set shifting

Deficits in cognitive set shifting are also evident in OCD.
These have been concerned with two quite different forms
of shift: affective set shifting, where the affective or reward
value of a stimulus changes over time (e.g., a rewarded
stimulus is no longer rewarded), and attentional set
shifting, where the stimulus dimension (e.g., shapes or
colours) to which the subject must attend is changed. Work
in primates has suggested a double dissociation between
these types of shift, with affective shifts being dependent
upon the OFC and attentional shifts requiring the lateral
prefrontal cortex (Roberts et al., 1992; Dias et al., 1996;
Hornak et al., 2004).

At first glance, the literature suggests impairments in
OCD in both affective and attentional shift domains as
exemplified by the Object Alternation Task (OAT) and the
CANTAB intra-dimensional/extra-dimensional (ID/ED)
set shifting task, respectively (Veale et al., 1996; Abbruzzese
et al., 1997; Aycicegi et al., 2003; Watkins et al., 2005;
Chamberlain et al., 2006). However, there have been recent
doubts concerning the specific sensitivity of the OAT to
orbitofrontal damage since other frontal lobe lesions may
affect this task (Freedman et al., 1998). The sensitivity of
the OAT to cognitive dysfunction in OCD is also
questionable; 1 study showed intact performance on this

task in OCD patients (Katrin Kuelz et al., 2004). Using a
probabilistic learning and reversal task where subjects must
acquire and then reverse a two-choice visual discrimina-
tion, a task reported to be dependent on the integrity of the
OFC (Fellows and Farah, 2003), a recent study also
reported intact performance in (largely medicated) patients
with OCD (despite impairment in other cognitive domains)
(Chamberlain et al., 2007a). This finding suggests either
that this probabilistic reversal learning task is not
sufficiently sensitive to identify what are likely therefore
to be subtle changes in orbitofrontal regions in OCD; that
OCD patients do not have cognitive deficits on orbito-
frontal-based cognitive tasks; or that SSRIs affect perfor-
mance on this task. Of note, a reversal learning fMRI study
reported reduced activation of OFC, dorsolateral prefron-
tal cortex, anterior prefrontal cortex and insula in OCD
patients during affective switching compared with healthy
controls (Remijnse et al., 2006), indicating that there may
be abnormalities in patients during reversal learning tasks
at a brain functional level. However, it must be appreciated
that this study involved considerable patient co-morbidity
which could account for aberrant activations.

Deficits of attentional set shifting in OCD have been
found in several neurocognitive studies using the CAN-
TAB ID/ED set shifting task (Veale et al., 1996; Watkins
et al., 2005; Chamberlain et al., 2006, 2007b). This deficit is
most consistently reported at the ED stage (in which the
stimulus dimension, e.g., shape, colour or number, alters
and subjects have to inhibit their attention to this
dimension and attend to a new, previously irrelevant
dimension). The ED stage is analogous to the stage in the
Wisconsin Card Sorting Task where a previously correct
rule for card sorting is changed and the subject has to
respond to the new rule (Berg, 1948). This ED shift
impairment in OCD patients is considered to reflect a lack
of cognitive or attentional flexibility and may be related to
the repetitive nature of OCD symptoms and behaviours.
Deficits in attentional set shifting are considered to be more
dependent upon dorsolateral and ventrolateral prefrontal
regions than the orbital prefrontal regions included in the
orbitofronto-striatal model of OCD (Pantelis et al., 1999;
Rogers et al., 2000; Nagahama et al., 2001; Hampshire and
Owen, 2006), again suggesting that cognitive deficits in
OCD may not be underpinned exclusively by OFC
pathology.

3.3. Planning

There is also evidence for dorsolateral prefrontal cortex
(DLPFC) dysfunction in patients with OCD, in conjunc-
tion with impairment on a version of the Tower of London,
a task often used to probe planning aspects of executive
function. A neuroimaging study demonstrated planning
impairments in OCD patients on this task, which were
associated with decreased activation compared with
matched controls in DLPFC, premotor cortex, anterior
cingulate cortex, precuneus, inferior parietal cortex,
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caudate and putamen (van den Heuvel et al., 2005). The
authors propose that their findings represent decreased
responsiveness in dorsal prefronto-striatal circuits in OCD,
suggesting that cognitive impairments in OCD are related
to differences in brain regions outside the affective
orbitofrontal loop, perhaps also including abnormalities
in the dorsolateral prefronto-striatal loop (Alexander et al.,
1986). This loop involves projections from the DLPFC and
posterior parietal areas to the head of the caudate, then to
the mediodorsal and ventral anterior thalamus via the
globus pallidus and substantia nigra pars reticulata, and
may be involved in spatial attention and working memory
processes. Impairment on the Tower of London task has
also been demonstrated in healthy first-degree relatives of
OCD patients (Delorme et al., 2007).

3.4. Decision-making

Lesion studies have suggested that orbitofrontal damage
often leads to impairments in decision-making (see Section
2.2), thought to reflect the function of the OFC in: (i)
integrating affective information relayed from other limbic
areas, (ii) attributing reward value to stimuli or behaviour-
al response outcomes and (iii) suppressing responses which
are now inappropriate. Indeed, some have even concep-
tualised OCD as a disorder of decision-making caused by
orbitofrontal dysfunction (Sachdev and Malhi, 2005).
However, using tasks such as the Iowa gambling task,
which aims to simulate real-life decision-making and is
known to be sensitive to frontal lobe dysfunction, there
have been inconsistent findings as to whether OCD patients
have decision-making impairments (Bechara et al., 1994;
Cavedini et al., 2002; Nielen et al., 2002). In addition, using
a different task, the Rogers et al. (1999) gamble task,
decision-making has been repeatedly found to be intact in
patients with OCD despite impairment on other tasks
(Watkins et al., 2005; Chamberlain et al., 2007a).

In summary, there is some incongruence between
cognitive findings and the orbitofronto-striatal model of
OCD. Although there is reasonably well-replicated evi-
dence that patients with OCD are impaired in response
inhibition and in attentional set-shifting, regions thought
to be necessary for these functions are not exclusively
limited to the lateral orbitofrontal loop. In addition, there
is little conclusive evidence to suggest that patients with
OCD are impaired on tasks classically thought to be
dependent upon the OFC, such as reversal learning and
decision-making. Findings from the cognitive tests dis-
cussed in this review are summarised in Table 3, along with
putative brain regions thought to be important for each
cognitive process. These findings raise questions concern-
ing the relationship between cognitive function and the
orbitofrontal dysfunction identified in OCD and the
potential involvement of additional brain regions in OCD
pathology. This will be discussed further after a considera-
tion of the structural MRI findings in OCD.

4. Findings from structural MRI
4.1. Region of interest studies

The evidence in support of the orbitofronto-striatal
model of OCD from PET studies (see Section 2.3) has led
many groups to search within these regions for structural
brain abnormalities in patients. The majority of studies
have utilised a case-control region-of-interest (ROI)
approach, which was until recently the main analysis
method available. These studies have suggested that
structural abnormalities are evident in OCD patients
within the affective fronto-striatal loop. The most con-
sistent finding has been reduced volume in OFC (Szeszko
et al., 1999; Choi et al., 2004; Kang et al., 2004; Atmaca
et al., 2006, 2007); significant abnormalities have also been
reported elsewhere, including in the basal ganglia, thala-
mus, amygdala, anterior cingulate and hippocampus
(Scarone et al., 1992; Robinson et al., 1995; Aylward
et al., 1996; Jenike et al., 1996; Rosenberg and Keshavan,
1998; Szeszko et al., 1999, 2004a; Gilbert et al., 2000;
Kwon et al., 2003; Choi et al., 2004, 2006; Kang et al.,
2004; Atmaca et al., 2006, 2007).

In accordance with the orbitofronto-striatal model of
OCD, reduced striatal volumes have been reported several
times in patients (Robinson et al., 1995; Rosenberg et al.,
1997b; Szeszko et al., 2004a), but the direction of findings
is not entirely consistent; increased volume of the head of
the right caudate has also been reported in OCD (Scarone
et al., 1992) and a review in 1996 reported no consistent
differences in caudate volume in OCD (Aylward et al.,
1996).

The thalamus has also been implicated with findings of
increased volume in OCD (Gilbert et al., 2000; Atmaca
et al., 2006), and a subsequent reduction of thalamic
volume after 12-week treatment with the SSRI paroxetine
(Gilbert et al., 2000) but not following Cognitive Beha-
vioural Therapy (CBT) (Rosenberg et al., 2000). Given that
SSRIs and CBT are both recognised as first-line treatments
of OCD (Stein et al., 2007), with some positing cognitive
therapy to be more effective than SSRIs (Foa et al., 2005),
these data suggesting a differential effect of cognitive and
pharmacological treatments on brain structure are of
considerable interest. However, replication is warranted
when comparing findings from studies using small samples,
and there is also a need to study therapy-associated effects
on brain structure beyond a 12-week treatment period,
particularly in the case of CBT where treatment-response
time may be longer than this (Grados et al., 1999).

Other studies have emphasised limbic elements of the
circuit with findings of significantly increased anterior
cingulate volume (Szeszko et al., 2004a), decreased
hippocampal volume (Kwon et al., 2003), a loss of the
normal hemispheric asymmetry of the hippocampal-amyg-
dala complex (Szeszko et al., 1999) and other amygdala
volumetric differences (Szeszko et al., 1999, 2004b).
Finally, reduced pituitary volume has been reported in
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Summary of findings from neuropsychological testing of OCD patients on the cognitive tasks discussed in this review

Cognitive process

Cognitive
subdomain

Task(s)

Putative underlying brain region(s)

Findings in OCD to date

Inhibitory control

Motor inhibition

Stop-signal task;
Go/no-go task

Predominantly a right-sided network
including right inferior frontal gyrus,
anterior cingulate, frontal, temporal
and parietal cortices

Impaired: Bannon et al. (2002, 2006);
Chamberlain et al. (2006a, 2007b);
Penades et al. (2007)

Intact: Bohne et al. (2008)*

Cognitive
inhibition

Stroop task

Impaired: Hartston and Swerdlow
(1999); Penades et al. (2005, 2007);
Bannon et al. (2002, 2006)

Cognitive flexibility

Attentional set
shifting

CANTAB intra-
dimensional/extra-
dimensional task

Ventrolateral and dorsolateral
prefrontal cortex

Impaired: Veale et al. (1996); Watkins
et al. (2005); Chamberlain et al. (2006a,
2007b)

Simple reversal

Object alternation
task

Orbitofrontal cortex, medial
prefrontal, anterior cingulate, frontal
pole

Intact: Nielen and Den Boer (2003)°
Impaired: Abbruzzese et al. (1997);
Aycicegi et al. (2003)

Intact: Katrin Kuelz et al. (2004)

Probabilistic and
reversal learning

Probabilistic
reversal learning

Orbitofrontal cortex

Impaired: Remijnse et al. (2006)°

Intact: Chamberlain et al. (2007a)

Executive planning

Tower of London

Dorsolateral prefrontal cortex and
associated network including premotor
cortex, anterior cingulate, precuneus,
inferior parietal cortex, caudate and
putamen

Impaired: Veale et al. (1996); Nielen
and Den Boer (2003); Van den Heuvel
et al. (2005); Chamberlain et al. (2007a)

Decision-making

Towa gambling task

Orbitofrontal cortex and other frontal
areas

Impaired: Cavedini et al. (2002)

Intact: Nielen et al. (2002)

Rogers gambling
task

Orbitofrontal cortex and other frontal
areas

Intact: Watkins et al. (2005);
Chamberlain et al. (2007a, b)

Implicit learning

Serial reaction time
task

Caudate/ventral striatum,
hippocampus, frontal areas

Intact: no between-group behavioural

difference but aberrant recruitment of
brain regions in an fMRI study (Rauch
et al. (2007)

“Likely due to relative task insensitivity (go/no-go).

®Unclear how data for subjects “failing’ stages were dealt with in this study; exclusion of data for subjects failing a stage is unduly conservative.

“Fewer points accumulated. 50-90% of participants had a co-morbid axis-I mood disorder—a major confound for probabilistic learning (depressive
patients show deficits on this task).

unmedicated children with OCD (MacMaster et al., 2006)
and reduced anterior superior temporal volume has also
been found in patients with OCD (Choi et al., 2006).
Other studies have chosen to look specifically at white
matter abnormalities, with findings of reduced total
white matter (Jenike et al., 1996), decreased retrocallosal
white matter including in the parieto-occipital area (Breiter
et al., 1994; Jenike et al., 1996), and increased size of the
corpus callosum in patients with OCD (Rosenberg et al.,

1997a). See Fig. 3 summarising z-scores for significant
findings from previous ROI studies.

Given the diversity of methods used to examine the
OFC, for example in defining anatomical boundaries, the
repeated finding of reduced OFC volume in OCD patients
appears to be remarkably robust (though this could
represent a publication bias). However, these MRI findings
also demonstrate inconsistencies in the direction of
reported volume changes of some structures, particularly
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Fig. 3. Summary of significant structural abnormalities identified by case-control, region-of-interest MRI studies of OCD patients compared with healthy
controls. Positive z-scores represent increased region volume in OCD patients compared with healthy controls, negative z-scores represent decreased
region volume in OCD. Each bar represents the z-score for a significant case-control difference identified from a previous study.

with regard to the basal ganglia. This discrepancy may be
partly explained by heterogeneity within the OCD pheno-
type. For example, in a subgroup of patients with OCD,
basal ganglia enlargement may occur as a result of
antibody-mediated inflammation as part of Paediatric
Autoimmune Neuropsychiatric Disorder Associated with
Streptococcal infection (PANDAS) (Giedd et al., 2000;
Peterson et al., 2000; Swedo and Grant, 2005). On the
other hand, some OCD studies may have included more
patients with co-morbid tic disorders such as Tourette’s
syndrome, in which there is evidence to suggest reduced
basal ganglia volumes (Peterson et al., 1993). Additionally
differences in striatal findings may be related to age
differences between samples, which are known to have an
effect on striatal volume (Toga et al., 2006). Further
evidence is still required to fully assess the occurrence of
structural abnormalities in other limbic regions such as the
amygdala and hippocampus.

4.2. Limitations of the region of interest approach

While the findings from case-control ROI studies are
clearly relevant in elucidating the neurobiology of OCD,
there are several methodological limitations which may
account for inconsistent findings. The ROI method
requires that regions are manually delineated; a subjective
and technically laborious process for which operators must
be rigorously trained. This has restricted studies in terms of
the number of regions and subjects that can be feasibly
investigated. Thus in most cases analysis has focused upon
one or two regions within a small sample, limiting
statistical power and generalisability of results. Also,

methods for manually defining anatomical landmarks
differ between studies which may lead to inconsistencies
in reported volume changes; and separate analyses of
several regions present a multiple comparisons issue which
is not always accounted for.

Additionally, an a priori hypothesis is required because
researchers must choose specific regions to investigate
based on prior evidence. This approach carries with it the
obvious caveat of self-fulfilling findings in that if one only
searches where case-control differences are expected, the
potential to discover theoretically unanticipated regions is
limited. There is also a question of which evidence should
be used to formulate such hypotheses. The hypothesis
typically employed in structural MRI studies investigating
OCD centres on abnormalities in the orbitofronto-striatal
circuit. This hypothesis is largely based on evidence from
functional neuroimaging (see Section 2.3), initially from
PET studies measuring cerebral glucose metabolism and
regional cerebral blood flow (rCBF), both at rest and
during symptom provocation (Baxter et al., 1987, 1988;
Nordahl et al., 1989; Swedo et al., 1989; Sawle et al., 1991;
McGuire et al., 1994; Rauch et al., 1994; Cottraux et al.,
1996). Interestingly, following the seminal paper by Baxter
et al. (1987), many of these PET studies were also heavily
based on an ROI approach, only examining select regions
such as those originally reported by Baxter et al., e.g., the
OFC and caudate. Therefore, critically implicated regions
may have been overlooked. Additionally, it may not always
be the case that functional differences reflect structural
abnormalities within the same brain areas, i.e., regions of
functional, metabolic and structural abnormalities in OCD
may not be equivalent. In summary, we advocate a
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cautious approach when developing a hypothesis of which
brain regions to choose for any ROI-based analysis as this
requires narrowing the field of investigation and so may
neglect findings elsewhere in the brain.

4.3. Whole brain-based analyses

In recent years, whole brain-based analyses using voxel-
level analysis methods (Bullmore et al., 1999; Ashburner and
Friston, 2000) have also provided some intriguing results
about OCD. A key feature of this rapid and automated
method of analysis is that it examines differences in grey
matter throughout the brain, without the need to pre-specify
regions of interest for investigation. This unbiased approach
is of value both to confirm the validity of the orbitofronto-
striatal hypothesis developed in ROI studies and also to
reveal grey matter differences in areas not previously
considered. The potential utility of voxel-level analysis is
demonstrated by schizophrenia research, where this has
consistently revealed decreased grey matter concentrations in
the insula, an unpredicted area not previously examined in
earlier ROI studies (Wright et al., 1999; Sigmundsson et al.,
2001; Hulshoff Pol et al., 2002; Kubicki et al., 2002).

The whole brain-based structural MRI studies currently
available are far fewer in the field of OCD than in
schizophrenia; there are three published VBM studies on
OCD yet there were at least 15 published VBM studies on
schizophrenia by May 2004; for review see Honea et al.
(2005). We performed a quantitative voxel-level meta-
analysis (using ALE software) on these structural studies of
OCD. However, the available coordinates from the few
studies published to date were insufficient to reveal
significant foci of structural abnormalities (for methodo-
logical details of ALE see Section 2.3). Thus the evidence
that can be drawn from VBM studies on OCD is only
preliminary at this stage but certainly may already help to
reveal whether OCD models proposing dysfunction in the
orbitofrontal-striatal loop are sufficient to provide a
comprehensive account of OCD.

4.3.1. VBM in OCD

The first VBM study of OCD involved 25 patients and 25
controls (Kim et al., 2001). Eight patients were medication-
naive, the others were taking anti-obsessional medication
or neuroleptics, but were medication-free for 4-weeks prior
to scanning. Four patients had co-morbidities, 21 had
OCD as their sole diagnosis. The authors reported
increased grey matter density in left OFC, superior
temporal gyrus, inferior parietal lobule, thalamus, right
insula, middle temporal gyrus, inferior occipital cortex, and
bilateral hypothalamus; and decreased grey matter density
in the left cerebellum and cuneus. Although differences
were reported in many regions, findings were not corrected
for multiple comparisons so type I errors (false positives)
may prevail and replication is required.

Pujol et al. (2004) reported a second VBM study in 72
patients and 72 healthy controls. This large study employed

a modulated method of VBM, ‘optimised VBM’ (Good
et al.,, 2001), where a study-specific template is used to
reduce possible errors during image normalisation. Addi-
tionally, voxel values were modulated by Jacobian determi-
nants to restore volume differences which have been
removed during normalisation, allowing an indication of
volume changes as opposed to only changes in grey matter
density. Five patients were medication-naive, 67 had
previously received medication including SSRIs, clomipra-
mine, and neuroleptics; 18 of these subjects were medica-
tion-free for 4 weeks prior to scanning. Co-morbidity with
anxiety and depressive symptoms was not considered an
exclusion criterion provided that OCD was the primary
clinical diagnosis. The authors reported significant absolute
volume decreases in right medial frontal gyrus, left medial
OFC and the left insular—opercular region. They also
reported significant grey matter increases relative to global
grey matter volume in bilateral putamen and left anterior
cerebellum. Additionally they described interregional vo-
lume correlations between these six locations in patients,
with an inverse correlation between subcortical and cortical
structures, positive correlation between cortical regions and
positive correlation between left and right striatum. In the
control group, only the latter of these was found to be
significant, suggesting an abnormal anatomical connectivity
in patients with OCD. Finally the authors showed an
apparent preservation of bilateral ventral striatal areas (i.c.,
an absence of age-related volume decrease) in patients but
not in controls.

Another recent whole brain study in OCD also used
optimised VBM to assess grey matter volumes in 19 OCD
patients and 15 healthy controls (Valente et al., 2005).
Eight patients were medication-free for at least 3 weeks
prior to scanning, 4 patients were taking SSRIs and seven
patients were taking clomipramine. Seven patients fulfilled
DSM-IV (American Psychiatric Association, 1994) criteria
for MDD, seven for social phobia, five for specific phobia,
three for generalised anxiety disorder, one for panic
disorder and one for ADHD. Based on their a priori ROI
hypothesis, the authors performed an analysis uncorrected
for multiple comparisons on the orbitofrontal, anterior
cingulate, striatal, thalamic and temporo-limbic regions
previously implicated in imaging studies of OCD. They
then performed a corrected whole brain-based VBM
analysis, to search for additional volumetric abnormalities
not previously assessed in ROI-based MRI studies. Both
types of analysis were performed within the whole sample,
and within OCD subjects without major depression
(n = 12) versus healthy controls (n = 15). When assessing
OCD patients without depression (uncorrected p<0.001),
the authors reported increased grey matter in areas of left
OFC and insula, left parahippocampal gyrus/uncus/amyg-
dala, and right parahippocampal and fusiform gyri; and
decreased grey matter in right OFC and left anterior
cingulate/medial frontal gyri. The report of increased grey
matter in left OFC was the only predicted finding that
survived correction for multiple comparisons (corrected
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p-value of 0.043). However, it is striking that this study
revealed one unpredicted region of grey matter decrease, in
the angular and supramarginal gyri of the right parietal
lobe (whole brain corrected p = 0.004).

In summary, these VBM findings provide some suppor-
tive evidence for orbitofronto-striatal structural abnorm-
alities in OCD, for example there are two further findings
of reduced grey matter in orbitofrontal regions (Valente
et al., 2005; Pujol et al., 2004), and there are findings of
increased grey matter in striatal areas (Pujol et al., 2004),
consistent with some findings from ROI structural MRI
studies (see Section 4.1). However, two of the three VBM
studies have reported structural changes in parietal regions;
left inferior parietal lobe (Kim et al., 2001) and right
supramarginal and angular gyri (Valente et al., 2005).
These results suggest that the parietal lobe should be a
focus for further exploration of structural abnormalities in
OCD; this is echoed by findings from PET and fMRI
studies as described below (see Section 5.1). Anatomical
regions reported in the whole brain-based VBM analyses
are shown in full in Table 4; Fig. 4 shows peak coordinates
of whole brain VBM findings in OCD.

Table 4
Voxel-based morphometry MRI analyses of OCD
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4.3.2. Limitations of VBM studies

Limitations of the VBM studies performed to date may
help account for inconsistencies in anatomical regions that
have been proposed by each study. Firstly, one study did
not correct for multiple comparisons and so may be
affected by type I error (Kim et al., 2001). Further, the
majority of patients from all three studies had been
medicated previously and a considerable number were
taking medication at the time of scanning.

Additionally, many of the patients in the three VBM
studies had co-morbidities such as MDD, social phobia or
panic disorder. Since the neural correlates of these
disorders are not well-characterised and may differ from
those of OCD, inclusion of such cases may lead to non-
replication. For example, a PET study of glucose
metabolism showed significantly reduced left hippocampal
metabolism in subjects with MDD alone, and subjects with
OCD and concurrent MDD, but not in individuals with
OCD alone (Saxena et al., 2001b). Additionally, another
glucose metabolism study, where scanning was followed by
8—12 weeks treatment with the SSRI paroxetine, showed
that subsequent improvement in OCD symptoms was

Study Talairach coordinates® Location
X Y zZ
Regions of increased grey matter in patients
Kim et al. (2001) =25 55 6 Left orbitofrontal cortex
—49 =21 11 Left superior temporal gyrus
-50 -35 41 Left inferior parietal lobule
-5 -23 14 Left thalamus
32 12 -2 Right insula
54 -59 9 Right middle temporal gyrus
36 —84 —4 Right inferior occipital cortex
—1 —1 -6 Bilateral hypothalamus
Pujol et al. (2004) 17 12 0 Right ventral putamen
-12 —45 -10 Left anterior cerebellum
-19 13 —4 Left ventral putamen
Valente et al. (2005)° 22 19 7 Left posterior orbitofrontal cortex and anterior insula
-31 -23 -19 Left parahippocampal gyrus, uncus, amygdala
30 -23 —18 Right parahippocamapal and fusiform gyri
Regions of decreased grey matter in patients
Kim et al. (2001) —40 —64 —34 Left cerebellum
—14 —49 13 Left cuneus
Pujol et al. (2004) 1 31 39 Right medial frontal gyrus
—4 33 -19 Left gyrus rectus (medial orbitofrontal cortex)
—43 —11 8 Left posterior insula
Valente et al. (2005)° 34 —61 35 Right angular and supramarginal gyrus (parietal cortex)
17 50 16 Right anterior orbitofrontal cortex
-17 27 33 Left anterior cingulate and medial frontal cortex

“Where analyses produced coordinates in MNI space, these coordinates were then converted to Talairach space using the icbm2tal transform (Lancaster

et al., 2007).

PReported coordinates are for the sample including 12 patients, after subjects with co-morbid depression were excluded.
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Velente et al., 2005

@ Pujol et al,. 2004

® Kimetal., 2001

Fig. 4. Summary of significant structural abnormalities identified by case-control, voxel-based morphometry studies of OCD. Peak MNI coordinates of
decreased and increased grey matter from whole brain VBM studies are shown on axial brain images. The plotted coordinates indicate some agreement
with traditional orbitofronto-striatal models of OCD but also a rationale to explore other theoretically unpredicted regions such as parietal areas:
(A) areas of increased grey matter and (B) areas of decreased grey matter. R and L markers denote side of brain, numbers denote z dimension of each slice

in MNI space.

associated with a higher pre-treatment glucose metabolism
in the right caudate nucleus, whereas improvement of
MDD was significantly correlated with lower pre-treatment
metabolism in the amygdala and the thalamus, and higher
pre-treatment metabolism in the medial prefrontal cortex
and anterior cingulate. This indicated that treatment-
response has different neural substrates in the two
disorders (Saxena et al., 2003).

A possible additional confound within imaging studies is
the inclusion of subjects with a plethora of OCD
symptoms. Previous work has suggested that different
symptom dimensions, e.g., contamination/washing versus
symmetry/ordering, may have distinct neural substrates
(Phillips et al., 2000; Mataix-Cols et al., 2004), which may
lead to inconsistent findings in groups of patients with
differing symptom profiles. Further research in carefully
selected samples is needed to explore this fully.

From a methodological perspective, there are some
criticisms about potential confounds from the preproces-
sing methods employed in structural VBM, such as
difficulties in alignment of non-homologous brains (Crum
et al., 2003) and in choosing smoothing kernel size (Jones
et al., 2005). However, VBM at least provides an objective
starting point for identifying brain abnormalities across the
whole brain which can be further validated by more in-
depth ROI studies.

4.3.3. Multivariate systems-level approaches

Theoretically, OCD has been considered to result from
dysfunction within a neurocognitive circuit, the orbito-
fronto-striatal loop, with structural and functional ab-
normalities across a brain system, rather than within
discrete brain regions. In contrast, the methods employed
by most imaging studies to date, using either ROI or mass

univariate testing of individual voxels, will best identify
case-control differences in individual voxels or regions.
Theoretically more appropriate methods aiming to identify
systems-level brain abnormalities in OCD have only been
used very recently. For example, using the structural MRI
data from a sample which underwent conventional VBM in
a previous study (Pujol et al., 2004), a system of abnormal
regions in OCD was identified by testing the sum of
t-statistics across all voxels against a chi-square distribu-
tion (Soriano-Mas et al., 2007). This system comprised
bilateral medial prefrontal areas, posterior cingulate and
precuneus, cerebellum and posterior insula; grey matter
volume in this system could be used to predict whether a
subject had a diagnosis of OCD. Likewise, a recent PET
study employing both univariate and multivariate methods
to identify abnormalities in OCD reported functional
abnormalities in cortico-striatal regions using both meth-
ods, but demonstrated relatively greater power of the
multivariate approach to reveal functional network
abnormalities (Harrison et al., 2006). We have recently
used a multivariate method, partial least squares (PLS)
(Mclntosh et al., 1996), to identify two anatomical brain
systems; a parieto-cingulo-striatal system, and a predomi-
nantly fronto-temporal system including OFC and inferior
frontal gyri, in which increased and decreased grey matter,
respectively, were associated with impairment on a motor
response inhibition task (SSRT), in both OCD patients and
their unaffected first-degree relatives, compared with
healthy controls (Menzies et al., 2007). We were also able
to demonstrate that anatomical variation within these two
systems was familial, suggesting that brain structure in
these systems is a candidate endophenotype for OCD and
may represent a marker of genetic risk for OCD. Multi-
variate techniques such PLS are particularly advantageous
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since they allow flexible, combined analysis of both
cognitive and imaging data, yet reduce significance testing
to one or a few statistics and so do not incur the stringent
thresholds usually required to control multiple compar-
isons entailed by mass univariate analyses.

5. Additional regions putatively involved in OCD
5.1. Evidence from cognitive studies

From a cognitive perspective, there has been sparse and
inconsistent documentation of impairments in OCD
patients on tasks classically defined as ‘orbitofrontal-
dependent’, yet paradoxically other cognitive processes,
not regarded to rely so heavily on orbitofrontal function,
such as set shifting, response inhibition and planning, are
frequently impaired in patients. These deficits have been
reported in medicated and unmedicated patients (Mataix-
Cols et al., 2002; Watkins et al., 2005; Chamberlain et al.,
2006) and persist over time (Nielen and Den Boer, 2003;
Roh et al., 2005; Bannon et al., 20006), despite the effects of
pharmacological intervention, e.g., SSRIs, and CBT, on
reducing anxiety, OCD symptom expression, and meta-
bolic hyperactivity (Benkelfat et al., 1990; Baxter et al.,
1992; Swedo et al., 1992; Saxena et al., 1999). Response
inhibition and set shifting deficits are also evident in
unaffected first-degree relatives of patients with OCD
(Chamberlain et al., 2007b) and response inhibition
deficits are associated with brain system structural
abnormalities in patients and unaffected relatives (Menzies
et al., 2007) indicating that they may be a marker of genetic
risk for OCD, and could potentially be useful in clarifying
both the diagnostic classification of OCD and its under-
lying genetic basis; for review of the principles of
endophenotypes see Gottesman and Gould (2003). In
summary, deficits in set shifting, planning and response
inhibition indicate that regions exclusive of the orbito-
fronto-striatal loop, such as dorsolateral and ventrolateral
prefrontal and parietal cortex may be involved in the
pathology of OCD.

5.2. Evidence from PET

A number of functional imaging studies report findings
in OCD from regions outside the orbitofronto-striatal
circuit (Table 1). In the symptom provocation PET study
by Rauch et al. (1994), when the authors carried out an
additional, whole brain analysis for increased rCBF in
OCD (including correction for multiple comparisons), the
areas they found which approached significance included
several outside orbitofronto-striatal regions, e.g., the
angular gyrus in the parietal lobe, and visual association
cortex. Furthermore, in the glucose utilisation PET study
by Nordahl et al. (1989), the authors report significant
abnormal findings in OCD, not just within predicted
regions of OFC but also a reduction of glucose metabolism
within bilateral parietal lobes. They state that these are

preliminary findings requiring validation since they are
uncorrected for multiple comparisons. However, even
despite this exploratory approach, they did not find any
significant abnormalities within the basal ganglia, an area
considered to be part of a clearly hypothesised circuit for
OCD. Further evidence supporting the involvement of
parietal areas in OCD comes from another symptom
provocation PET study which reported that cerebral blood
flow at the temporo-parietal junction, particularly on the
right, was negatively correlated with symptom intensity
(McGuire et al.,, 1994). Additionally, SPECT studies
measuring rCBF using technetium 99m d,/_hexamethyl
propyleneamine oxime (*™Tc-HMPAO) indicate parietal
abnormalities in OCD (Rubin et al., 1992; Lucey et al.,
1995). For example, in agreement with McGuire et al.
(1994), Lucey et al. (1995) found a negative correlation
between an obsessive-compulsive symptom dimension and
right parietal rCBF.

5.3. Evidence from fMRI

FMRI studies using symptom provocation paradigms
have been carried out which do in part suggest abnormal
activation of the affective loop in patients during symptom
exposure (Breiter et al., 1996; Adler et al., 2000; Shapira
et al., 2003; Mataix-Cols et al., 2004; Nakao et al., 2005b;
Schienle et al., 2005); this is also evident in the ALE meta-
analysis including some of these studies (Fig. 2). These
fMRI studies also show changes in activation of theoreti-
cally unanticipated regions such as the DLPFC and
parietal cortex during symptom provocation, suggesting
areas outside of the orbitofronto-striatal loop also respond
abnormally to symptom exposure in OCD patients. A
number of fMRI studies employing cognitive tasks also
report abnormalities in regions of the DLPFC and parietal
cortex (Maltby et al., 2005; van den Heuvel et al., 2005;
Viard et al., 2005; Remijnse et al., 2006). See Fig. 2 and
Table 2 for a summary of regions reported as abnormal in
case-control fMRI studies of OCD.

Summarising the findings from functional, metabolic
and structural imaging studies indicates that dysfunction in
the orbitofronto-striatal circuit and connected limbic
structures such as the anterior cingulate and amygdala
contribute to the pathology of OCD. There is convincing
data suggesting that: (i) this circuit shows elevated
metabolism in patients with OCD, particularly associated
with expression of OCD symptoms and anxiety (see
Section 2.3 and Table 1), (i) the OFC is consistently
reduced in volume in OCD (see Section 4.1 and Fig. 3) and
(iii) that activation abnormalities are observed in these
regions during fMRI in OCD patients compared with
controls (Fig. 2 and Table 2). The causal relationship
between these structural and functional observations is
unknown, but interestingly functional brain changes have
been shown to be dynamic and may normalise following
therapeutic approaches which also reduce OCD symptoms
and anxiety (Saxena et al., 1999).
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However, the evidence we review above suggests that
brain abnormalities are not limited exclusively to these
areas. Many imaging studies have reported abnormalities
in additional brain regions in OCD including the parietal
lobe, particularly in the angular and supramarginal
gyri (Brodmann areas 39, 40), and the dorsolateral
prefrontal cortex, suggesting that parietal regions and the
dorsolateral prefronto-striatal circuit may also be affected
in OCD. Involvement of these candidate regions may well
contribute to the deficits in OCD patients in cognitive
functions not thought to be dependent upon orbitofronto-
striatal circuitry. Recent whole-brain studies, though
currently few in number, also lend support to the existence
of additional structural abnormalities in OCD, particularly
within parietal cortex (Valente et al., 2005; Kim et al.,
2001).

5.4. Parietal cortex

Major efforts are currently underway to further our
understanding of functional specialisations within the
parietal lobe e.g., Simon et al. (2002). This region is
important in a variety of executive tasks involving
functions such as attention, spatial perception and working
memory (Cabeza and Nyberg, 2000; Culham and Kanw-
isher, 2001). Given that some of these functions are
consistently reported to be affected in OCD, such as
attentional shifting (see Section 3.2), it is conceivable that
parietal lobe dysfunction, particularly within the angular
and supramarginal gyri, could contribute to the cognitive
deficits evident in OCD. In support of this argument,
Posner and Petersen (1990) suggested that parietal regions

operate as part of a posterior attention system involved
in disengaging spatial attention, and there is also evidence
suggesting that activity in the parietal lobe is related
to sustained attention and attentional set shifting
(Nagahama et al., 1996; Le et al., 1998; Hampshire and
Owen, 2006). Additionally, an fMRI study conducted in
patients with ADHD revealed reduced activation of
parietal areas including the angular and supramarginal
gyri which was associated with attentional impairments
(Tamm et al., 2006). Furthermore, the parictal lobe has
also been specifically implicated in planning (Williams-
Gray et al., 2007) and response inhibition (Rubia
et al., 2001b; Lepsien and Pollmann, 2002; Horn et al.,
2003), which are also both reported to be impaired in
OCD. Of interest, in an event-related potential study,
patients with OCD showed an enhanced P600 at the
right temporo-parietal area and prolonged latencies at
the right parietal region during a digit span test
when compared with healthy controls (Charalabos
et al., 2003). It is also intriguing that studies of white
matter abnormalities in OCD, for example employing
diffusion tensor imaging (DTI) and spectroscopy, have
reported abnormalities in bilateral supramarginal gyri
(Szeszko et al., 2005) and parietal white matter (Kitamura
et al., 2006).

5.5. Prefrontal cortex

Frontal areas other than the OFC have also been
implicated in the neuropathology of OCD by findings
from cognitive studies (see Section 3). In particular the
DLPFC is implicated in functions such as planning, and,
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together with parietal regions, has been postulated to be
part of the dorsolateral prefronto-striatal loop. Interest-
ingly, there is further suggestive evidence for a role of the
DLPFC in OCD pathology, for example the putative
neuronal marker N-acetyl-aspartate was significantly
increased in the DLPFC in 15 treatment-naive cases of
paediatric OCD (Russell et al., 2003). Other additional
regions which may well be affected in OCD include the
inferior frontal gyrus/ventrolateral prefrontal cortex,
known to be critical in both response inhibition (Aron
et al., 2003) and attentional set-shifting (Hampshire and
Owen, 20006).

There is evidence from primate studies showing anato-
mical connectivity between these regions which we
putatively suggest are also involved in OCD. Connections
have been demonstrated between parietal regions and the
DLPFC (Cavada and Goldman-Rakic, 1989; Romanski
et al., 1997; Roberts et al., 2007) and both regions
contribute to the dorsolateral prefronto-striatal circuit.
Interestingly, there is also evidence from primate studies to
suggest connections between the parietal lobe and areas of
the orbitofronto-striatal circuit already suggested to func-
tion aberrantly in OCD, for example with the OFC itself
(Cavada and Goldman-Rakic, 1989; Zald and Kim,
1996a), the thalamus (Giguere and Goldman-Rakic,
1988) and the striatum (Yeterian and Pandya, 1993).

In light of the above, we propose a revised model for
OCD in which the underlying pathology is not limited to
orbitofronto-striatal regions and associated limbic struc-
tures such as the amygdala, but also involves abnormalities
in additional brain systems, particularly including more
lateral frontal and parietal regions which may be con-
sidered to represent the dorsolateral prefronto-striatal
circuit defined by Alexander et al. (1986), (Lawrence
et al., 1998). See Fig. 5 for a summary of putative brain
regions involved in OCD and how these may be
anatomically linked.

6. Conclusions
6.1. Future directions

In summary there are several notable discrepancies
between findings from cognitive studies, neuroimaging
studies and the present theoretical model proposed to
underlie OCD. The currently available evidence suggests
that the orbitofronto-striatal model may not be sufficient
to explain the brain basis of OCD. There are several
potential reasons for this lack of concurrence. For
example, some cognitive tasks may have lacked the
required sensitivity and specificity to detect subtle orbito-
frontal-related cognitive dysfunction in OCD patients.
In a disorder such as OCD, with an early onset and most
likely a prolonged developmental trajectory with the
potential for formation of compensatory cognitive strate-
gies, it is perhaps not surprising the patients are not
impaired as predicted on some tasks. However it must be

borne in mind that in other putative neurodevelopmental
disorders, such as schizophrenia, there is broad cognitive
impairment and little evidence suggesting development of
compensatory cognitive strategies. Conflicting findings
could also be due to confounding factors such as patient
co-morbidity and inadequate matching of sample groups.
Further work on task development and careful selection of
patient samples may help to improve these aspects.

Nonetheless, it must be considered that non-replicated
and inconsistent findings, such has been the case particu-
larly with the VBM studies of OCD conducted so far (see
Section 4.3), may in fact reflect the null hypothesis that
there is no consistent structural abnormality in OCD and
that cognitive impairments are not underpinned by
structural abnormalities identifiable by MRI. Furthermore,
it is currently impossible to determine a direction of
causality between brain structure, cognition and a clinical
diagnosis of OCD—Ilongitudinal follow-up studies would
be required to test relevant hypotheses. However, the
existence of brain structural abnormalities and cognitive
impairment in unaffected relatives of patients does at least
suggest that these observations predispose to and precede
the emergence of OCD. The putative vulnerabilities which
might precipitate OCD in individuals at increased genetic
risk of the disorder, and the extent to which vulnerability
factors might be genetic or environmental in nature, can
only be speculated upon at this time. It is also likely that
some forms of OCD, for example associated with
PANDAS or following basal ganglia lesions, might be
directly related to particular structural changes within the
orbitofronto-striatal loop, in this case most likely in the
basal ganglia, and as such it could be expected that these
patients may have their own distinct cognitive profile.

Alternatively, it may be that structural changes have not
yet been found in OCD patients that fully account for their
cognitive deficits because ROI studies have not yet
included all of the areas mediating such deficits in the
relatively restricted searches necessitated by this method.
This could also be because the brain abnormalities
responsible for OCD are represented at a system or
network level, in which abnormalities across several
different regions account for impairments in cognition.
Further work involving connectivity analyses analogous to
that occurring in the field of schizophrenia research
(Schlosser et al., 2003; Honey et al., 2005), or employing
multivariate methods would help to clarify this matter.

In conclusion, consideration of findings from neuropsy-
chological and neuroimaging domains which are unex-
pected on a theoretical level may provide a framework for
further investigations necessary to fully understand: (i) the
neurobiological underpinnings of OCD and (ii) cognitive
and brain imaging markers both of OCD itself and for
genetic risk of this disorder. We would advocate a future
approach where whole brain-based neuroimaging and
cognitive studies direct researchers to the study of
additional regions outside the orbitofronto-striatal circuit,
followed by closer investigation of these regions. We would
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also anticipate potential adjunct contributions from con-
nectivity and multivariate imaging analysis methods. We
would predict that this strategy has the potential to be of
significant benefit in comprehensively identifying brain
changes in patients with OCD, thereby facilitating our
understanding of the disorder.
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