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of language and emotion: meta-analysis of brain structure
changes in schizophrenia patients

Thomas Nickl-Jockschat • Frank Schneider •

Alena D. Pagel • Angie R. Laird • Peter T. Fox •

Simon B. Eickhoff

Received: 20 June 2011 / Accepted: 29 July 2011 / Published online: 10 September 2011

� Springer-Verlag 2011

Abstract Schizophrenia is a neuropsychiatric disorder

entailing progressive psychotic, cognitive and affective

symptoms. Several imaging studies identified brain struc-

ture abnormalities in schizophrenia patients, particularly in

fronto-temporal regions and evidence for progressive ana-

tomical changes. Here, we synthesised these findings by

quantitative coordinate-based meta-analysis, assessing

regions of consistently reported brain structure changes,

their physiological functions and the correlation of their

likelihood with disease duration. The meta-analysis

revealed four significant clusters of convergent grey matter

reduction, while one cluster indicated higher grey matter

values in patients. A voxel-wise analysis revealed a

correlation between grey matter reduction and disease

duration in the left anterior insula. Functional charac-

terisation revealed significant association with reward,

affective processing and language functions. The current

analysis allowed the identification of consistent mor-

phometric changes across a large sample of studies in

regions that are associated with neurophysiological

functions that are altered as hallmarks of schizophrenia

psychopathology. The observation that the location of

presumably progressive pathology is functionally linked

to language and emotion is well in line with increasing

deficits in these domains with disease progression in

schizophrenia.
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Introduction

Schizophrenia is a neuropsychiatric disorder that goes

along with progressively debilitating symptoms. While its

exact pathogenesis remains unclear, a large number of

neuroimaging studies found compelling evidence for brain

morphology changes in schizophrenia [1]. Besides global

atrophy and ventricular enlargement, most studies impli-

cated a fronto-temporally pronounced pattern of altera-

tions, where medial temporal lobe structures, the superior

temporal gyrus and inferior frontal regions show volume

reductions in affected individuals [1]. Since brain structure

changes also can be found in first episode, drug-naı̈ve

patients [2] or unaffected first-degree relatives [3], the

interpretation of these results as gross morphological cor-

relates of disease-specific neuropathology seems plausible
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[4]. Matching disease development, progressive structural

abnormalities have also been described [5, 6].

While these results might raise the idea of progressive

fronto-temporal brain atrophy as a central feature in

schizophrenia, there are several serious limitations to this

conclusion. Findings on brain structure changes in

schizophrenia are often inconsistent and sometimes con-

tradictory over studies. The magnitude of the reported

changes is rather small with considerable overlaps between

a patient group and a healthy population [4]. Finally, most

studies—in particular with longitudinal designs—are based

on relatively small sample sizes.

We here report results from an anatomical likelihood

estimation (ALE)-based meta-analysis [7, 8] of thirty-eight

peer-reviewed articles, involving a total of 1,736 schizo-

phrenia patients and 1,915 healthy controls. The purpose of

our ALE meta-analysis was to provide a quantitative

summary of the existing findings on brain structure changes

in schizophrenia, to investigate whether the likelihood of

finding regional atrophy correlates with disease duration

and relate the identified regions to mental functions.

Methods

Literature search and selection

The PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) data-

base was searched using the following search strings‘‘schizo-

phrenia ? vbm’’, ‘‘schizophrenia ? voxel’’, ‘‘schizophrenia

? morphometry’’ and ‘‘schizophrenia ? voxel-based’’ to

identify morphometric MRI studies investigating schizophre-

nia. Additional studies were identified by reference tracing and

through review articles, and all results were manually verified

for inclusion criteria [9]. In total, 38 studies published

2001–2011 were included in the meta-analysis, 26 of which

gave information on disease duration (see supplementary

Table 1).

Anatomical likelihood estimation meta-analysis

procedure

The meta-analysis was carried out using the activation

likelihood estimation (ALE) approach for coordinate-based

meta-analysis of neuroimaging results [10, 11]. The

resulting non-parametric p-values were thresholded at a

cluster level corrected threshold of P \ 0.05 and trans-

formed into Z-scores for display. We then used the SPM

Anatomy Toolbox v1.5 [12] to compare the localisation of

the significant effects to histological areas. Regions that

have not yet been histologically examined were labelled

using the ‘‘Harvard-Oxford cortical and subcortical struc-

tural atlas’’ [13].

Correlations between disease duration and likelihood

of grey matter changes

We investigated whether the probability of finding regional

atrophy in schizophrenia was related to the disease duration

of the assessed patients. Thus, modelled anatomical effects

values were correlated on a voxel-wise level with mean

disease duration as reported in the original studies using

Spearman rank correlation (P \ 0.05). All 26 studies that

reported duration of disease were included in this analysis,

which was constrained to the regions showing a significant

convergence of reported atrophy across studies.

Functional characterisation by behavioural domains

To determine possible functional consequences of struc-

tural changes in schizophrenia, we analysed the behav-

ioural domain metadata associated with each obtained

cluster by reference to the BrainMap database (http://

brainmap.org/) to determine frequency of domain hits

relative to its distribution across the whole brain (i.e. the

entire database) [8, 14].

Results

Convergent atrophy in schizophrenia patients

We found 4 clusters of convergent evidence for regional

atrophy in patients relative to controls. The largest of these

four clusters (-46, 14, -3, k = 457) was located fronto-

temporally in the left periinsular region. It was extended

from the inferior frontal gyrus (opercular part, not

encroaching BA 44 or BA 45) across the anterior insula to

the superior temporal gyrus.

The maximum of the second largest cluster was located

in the left thalamus (-4, -20, 9, k = 146), while the

cluster extended over the mid-line into the right thalamus

and was allocated to regions of the thalamus projecting to

prefrontal and temporal lobes according to the thalamic

connectivity atlas [15]. A third cluster (-22, -10, -17,

k = 126) was found in the left medial temporal lobe.

Allocation by cytoarchitectonic probabilistic mapping

showed that this region of convergent atrophy was attrib-

uted mainly to the laterobasal (LB) complex of the

amygdala. Smaller parts were located in the superficial

(SF) amygdala, the entorhinal cortex and the subiculum.

Finally, we found convergent evidence for grey matter

decreases in the left basal forebrain/ventral striatum (-4, 6,

-3, k = 118). (Figure 1a, Supplementary Table 2).

In contrast to these findings, we also observed one

cluster located in the left putamen (-26, -2, 13, k = 156)

of convergent evidence for significantly increased grey
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matter in patients relative to healthy controls (Fig. 1b,

Supplementary Table 2).

Correlation of regional atrophy with duration of disease

Correlating the probability of finding differences between

patients and controls to the mean disease duration of the

patients included in the particular sample yielded one

cluster of significant positive association located in the left

anterior temporo-insular cortex (-46, 8, -7, k = 34). We

did, however, not find any significant clusters indicating a

correlation between regional grey matter increases and

disease duration. (Fig. 2, Supplementary Table 2).

Functional analysis by behavioural domains

All of the behavioural domains and paradigms that were

significantly (P \ 0.05, Bonferroni-corrected for multiple

comparisons) associated with the left periinsular cluster

were related to language, speech and music processing.

Experiments activating the amygdala/medial temporal lobe

cluster were significantly associated with affective and

emotional processing as well as face perception, olfaction

and memory. Experiments featuring activation in the basal

forebrain featured significant association with emotional

and in particular reward processing. Functional associa-

tions were least strong for the thalamic cluster, related to

interoception and reward.

The only cluster of significantly increased grey matter

volume, finally, was associated with action (execution)

related tasks, including finger tapping and overt speech.

Discussion

This study confirms and extends recent summaries on brain

morphology changes [16–18] in schizophrenia by demon-

strating the affection of frontal, temporal and thalamic

regions. While one of the first publications in this field

compared first episode with chronic schizophrenia patients

Fig. 1 a 4 clusters indicated convergent regional atrophy in schizo-

phrenia patients. Clusters were located in the left periinsular region,

the bilateral thalamus, the left medial temporal lobe (mainly the

laterobasal amygdala) and the left basal forebrain/ventral striatum.

b Only one cluster indicating significantly increased grey matter was

found. It was located in the left putamen
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[16], to our best knowledge, this is the first approach to

assess the influence of disease duration on the likelihood of

observing differences in regional brain structure. More-

over, we demonstrated an observer-independent data-dri-

ven approach to assess structure–function relationship of

affected brain regions by reference to the BrainMap

database.

The observed fronto-temporal predilection for brain

structure abnormalities is in line with several independent

lines of evidence. Functional MRI and EEG studies have

shown that the synchronisation of frontal and temporal

regions is attenuated in schizophrenia patients, and that this

strongly predicts their likelihood of experiencing halluci-

nations [19]. These findings have led to the hypothesis of a

fronto-temporal dysconnectivity as a pathophysiological

key mechanism underlying core symptoms such as auditory

hallucinations. The present data indicate that atrophy of

structures on the frontal operculum and the speech-sensi-

tive anterior insula [20] may be considered a neuroana-

tomical correlate of such symptoms. This view, which

highlights the role of structures beyond Broca’s region (BA

44/45), would be in line with a recent meta-analysis on the

functional localisation of auditory hallucinations [21].

An affection of the medial temporal lobe in schizo-

phrenia has been largely replicated by the volumetric lit-

erature [1]. We here were able to demonstrate structural

alterations in particular of the laterobasal group within the

amygdala complex. They are considered key structures for

the affective evaluation of incoming sensory, in particular

auditory and visual, stimuli [22]. In this context, it is not

only worthwhile to point to aberrant amygdala activation of

patients with schizophrenia in response to emotional

stimuli [23].

Thalamic regions have also been repeatedly implied in

the pathophysiology of schizophrenia. The fact that tha-

lamic atrophy is mainly found in nuclei projecting into the

prefrontal and the temporal neocortex further corroborate

the hypothesis of dysfunctional fronto-temporo-thalamic

networks as a key component in the pathophysiology of

schizophrenia [16–18]. Interestingly, aside from these

bilateral changes in the thalamus, all clusters of conver-

gence were located in the left hemisphere. Deficits of

cerebral lateralisation have been discussed as a key path-

ophysiological component in schizophrenia both on a

functional [24] and on an anatomical level [4, 24]. The

lateralised character of our own findings goes along with

these results.

In the current meta-analysis, we only observed a single

cluster of convergent increased grey matter values, in the

left putamen. Volume increases of the basal ganglia have

been described as a result of antipsychotic treatment [25], a

notion challenged by others [26]. Moreover, disturbances

of action control are frequently found in schizophrenia

[27]. We would hence tentatively suggest that the observed

disturbance of basal ganglia structure might reflect genuine

(patho-)physiological processes attributable to the disorder

itself rather than to a secondary pharmacological

phenomenon.

Physiologically, the affected regions are linked to cog-

nitive functions involved in language processing (including

listening, semantics or speech) or affect. Clinically, dis-

turbances of speech are a hallmark of schizophrenia and

emphasised by the fact that the DSM-V rates ‘‘disorganised

speech’’ as one of the 5 major diagnostic criteria. More-

over, auditory verbal hallucinations are a frequent feature

of schizophrenia psychopathology. Our results point to a

potential correlate of these symptoms by neuroanatomical

changes in regions contributing to language, speech and

semantics. Likewise, we demonstrated structural affection

of regions physiologically involved in affective processes

including reward, which matches behavioural and func-

tional changes of emotion processing in schizophrenia [28].

These seem to be directly related to functions that may be

subserved by the structurally altered regions found in this

study, in particular the medial temporal cluster. Moreover,

the affection of reward-related regions may mirror the

negative symptoms of lack of drive and motivation.

The analysis on the influence of disease duration only

yielded a small cluster in the left anterior insula, again in its

cognitive/language-related part. Thus, our results suggest a

Fig. 2 A voxel-wise analysis

assessing whether the

probability of finding

differences between patients

and controls was related to the

mean disease duration of the

patients included in the

particular sample yielded one

cluster located in the left
temporal pole
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qualitatively stable pattern of regions involved over the

course of the disorder that enrols fronto-temporal, limbic

and thalamic brain regions. It needs to be emphasised

though that our approach may not track progressive volume

loss in a given brain region but only describes whether

there is an increased likelihood of finding atrophy with

higher (mean) duration of disease in the investigated

sample. In summary, integrating across studies on pre-

sumably heterogeneous populations that were defined by

different diagnostic criteria, we demonstrate consistent

evidence for brain structure changes in regions associated

with reward, emotional and language processes in schizo-

phrenia patients, which is qualitatively stable over the

course of the disease.
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