Does size matter? Brain structure in low back pain: protocol for a systematic review and ALE meta-analysis of morphometric data

Matthew Bagg, Sylvia Gustin, Markus Hübscher, Benedict Wand, G. Lorimer Moseley, Martin Lotze, Simon Eickhoff, James McAuley

Citation

Review question(s)
What are the differences in brain gray matter volume and density in human adults with low back pain, compared to controls?

What are the differences in brain white matter structure in human adults with low back pain, compared to controls?

Which of the following clinical and methodological characteristics explain the observed structural differences: pain intensity, duration of low back pain, type of low back pain, depression and control for medication use in the study?

We will functionally characterise the brain areas that are identified as structurally different in people with low back pain.

 Searches
The following electronic databases will be searched: MEDLINE and EMBASE via Ovid, CINAHL, PsycINFO and BrainMap via Sleuth (BrainMap, University of Texas) (Fox & Lancaster, 2002; Fox et al., 2005; Laird, Lancaster, & Fox, 2005). The reference lists of all included studies or reviews that are identified during the search will be scrutinised for additional resources. Experts in the field will be contacted to see if they are aware of any other published material.

Only peer-reviewed journal articles will be considered. No other restrictions will occur

References:


Types of study to be included
There is no restriction on the design of studies to be included in the review.

Where studies include participants with LBP amongst other diagnostic groups, we will only include studies where LBP specific results are available. Where the same sample has been used in multiple papers, we will only include more than the original paper if each subsequent paper is a different form of analysis.
Condition or domain being studied
Low back pain (LBP) is the leading cause of years lived with disability worldwide (Collaborators, 2015). Most low back pain resolves quickly, however a moderate proportion of people will develop persistent symptoms (da C. Menezes Costa et al., 2012; Henschke et al., 2008; Wynne-Jones et al., 2014). Those people for whom pain persists use a disproportionate amount of healthcare compared to people with short term LBP or matched controls (Becker, 2010; Hang 2012) and do not seem to get better (da C. Menezes Costa et al., 2012) in spite of what we do (Artus et al., 2010). The expansive costs to individual and society, poor treatment effectiveness and the plateau in recovery provide great incentive to understanding more about the problem.

References:


Participants/ population
Human adults with low back pain of any duration, defined as site of greatest pain between the 12th rib and gluteal fold, with or without associated leg pain. Studies that involve people with non-specific low back pain or sciatica will be considered for inclusion.

Studies will be excluded if they contain subjects with low back pain caused by pathological entities such as infection, neoplasm, metastasis, osteoporosis, inflammatory disease or fractures

Intervention(s), exposure(s)
All studies that have used structural brain imaging techniques to examine human brain morphometry will be considered. Studies that examine spinal cord or peripheral nerve structure will be excluded.

Only whole brain analyses will be considered for inclusion in the meta-analyses. Studies making any form of a priori restrictions on their analysis will be included in the review but excluded from meta-analysis.

Comparator(s)/ control
Studies must have a healthy comparison group, matched for age and gender.
Outcome(s)

Primary outcomes

The primary outcomes are the region specific difference in ...

1. gray matter volume
2. gray matter density
3. white matter structure

...between people with and without low back pain

Coordinate data that are collected in Talairach space will be converted to MNI space using the icbm2tal function (Laird et al., 2010; Lancaster et al., 2007).

Analyses will be stratified according to gray/white matter type, type of outcome value (mean diffusivity, fractional anisotropy, gray matter volume (modulated images) or density (unmodulated images)) and direction of effect (e.g. increase vs decrease in outcome value).

References:


Secondary outcomes

Secondary outcomes are the within group influence of pain intensity and duration of low back pain on each of: gray matter volume, gray matter density and white matter structure between people with and without low back pain.

Risk of bias (quality) assessment

Included studies

A customised risk of bias tool will be developed for this review. The tool will be based on the Newcastle-Ottawa Scale (Wells et al., 2014), which has received support from the Cochrane collaboration as a quality assessment tool for observational studies. The tool will also include several supplementary items from a tool previously developed by our group (Di Pietro et al., 2013) that we have deemed important to the conduct of neuroimaging studies. The tool will examine both the quality of methods used and the standard of reporting in the paper.

Meta-bias

A jack-knife analysis (Radua & Mataix-Cols, 2009) will be conducted of the ALE results post meta-analysis to examine whether specific clusters are being driven by a low number of studies and should thus be interpreted with caution (Cauda et al., 2014). Jackknife analysis gives an idea of the reproducibility of the finding at each cluster by testing iterations with one study excluded each time. If a cluster remains significant in most or all of the iterations, it is likely to be a highly replicable result (Radua & Mataix-Cols, 2009).

References:

Strategy for data synthesis
It is the intention that all included studies will be subjected to anatomic likelihood estimation (ALE) meta-analysis. Studies that are not eligible for meta-analysis (missing data, a priori restrictions on analysis) will be reported in narrative form. Treatment cohort studies will only have baseline (pre-treatment) data included in the meta-analyses.

We will use custom MATLAB tools to conduct the meta-analyses. We will present the results in MNI coordinates, with cluster sizes and as images.

Analysis of subgroups or subsets
We aim to perform additional subgroup analyses to explore the influence of pain intensity, type of pain-state (nociceptive, neuropathic and mixed aetiology), duration of low back pain (acute – pain < 6 weeks, subacute – pain 6-12 weeks, chronic – pain > 12 weeks), level of depression and control for medication use on brain structure differences. Where it is not possible to subgroup studies in the manner specified a priori, a sensitivity analysis will be considered to determine the effect on the meta-analysis of pooling studies that are heterogeneous. Sensitivity analyses will also be considered to explore the effects on the meta-analyses results of factors that were not identified a priori.

Dissemination plans
The results of the review will be published in peer-reviewed academic journals and submitted for presentation at conferences.

Contact details for further information
Mr Bagg

NeuRA

PO Box 1165

Randwick NSW 2031

Australia

m.bagg@neura.edu.au

Organisational affiliation of the review
Neuroscience Research Australia

https://www.neura.edu.au

Review team
Mr Matthew Bagg, Neuroscience Research Australia, UNSW Prince of Wales Clinical School, NSW, Australia
Dr Sylvia Gustin, Gustin Pain Imaging Laboratory, UNSW School of Psychology, NSW, Australia
Dr Markus Hübscher, Neuroscience Research Australia, UNSW Prince of Wales Clinical School, NSW, Australia
Professor Benedict Wand, The University of Notre Dame Australia, School of Physiotherapy, WA Australia
Professor G. Lorimer Moseley, Sansom Institute for Health Research, University of South Australia, SA; Neuroscience Research Australia, NSW, Australia
Anticipated or actual start date
01 September 2015

Anticipated completion date
01 September 2016

Funding sources/sponsors
MB is supported by an Australian Postgraduate Award and UNSW Research Excellence Award.

GLM is supported by a Principal Research Fellowship from the National Health and Medical Research Council (NHMRC) of Australia ID1061279.

JM is supported by NHMRC project grants APP1047827 and APP1087045

Conflicts of interest
None known

Language
English

Country
Australia

Subject index terms status
Subject indexing assigned by CRD

Subject index terms
Brain; Brain Mapping; Humans; Low Back Pain

Stage of review
Ongoing

Date of registration in PROSPERO
28 August 2015

Date of publication of this revision
28 August 2015

DOI
10.15124/CRD42015019569

Stage of review at time of this submission
<table>
<thead>
<tr>
<th>Started</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary searches</td>
<td>Yes</td>
</tr>
<tr>
<td>Piloting of the study selection process</td>
<td>Yes</td>
</tr>
<tr>
<td>Formal screening of search results against eligibility criteria</td>
<td>No</td>
</tr>
<tr>
<td>Data extraction</td>
<td>No</td>
</tr>
<tr>
<td>Risk of bias (quality) assessment</td>
<td>No</td>
</tr>
<tr>
<td>Data analysis</td>
<td>No</td>
</tr>
</tbody>
</table>
PROSPERO

International prospective register of systematic reviews

The information in this record has been provided by the named contact for this review. CRD has accepted this information in good faith and registered the review in PROSPERO. CRD bears no responsibility or liability for the content of this registration record, any associated files or external websites.