Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder

Julia Sacher a,b,⁎, Jane Neumann a,c, Tillmann Fünfstück a, Alexandra Soliman d, Arno Villringer a,b,e, Matthias L. Schroeter a,b,e

a Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany
b Clinic of Cognitive Neurology, University of Leipzig, Liebigstr. 16, 04103 Leipzig, Germany
c Leipzig University Medical Center, iFB Adiposity Diseases, 04103 Leipzig, Germany
d Centre for Addiction and Mental Health (CAMH), College Street 250, Toronto, Canada, ON M5T1R8
e LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany

Article info
Article history:
Received 15 April 2011
Received in revised form 1 August 2011
Accepted 1 August 2011
Available online 3 September 2011

Keywords:
Major depressive disorder
Unipolar
Neuroimaging
Voxel Based Morphometric (VBM) Magnetic Resonance Imaging (MRI)
(18F)-fluorodeoxyglucose Positron Emission Tomography (FDG-PET)
Anatomical/activation likelihood estimate method (ALE)

Abstract
Background: Depression has a lifetime prevalence of up to 20%. Neuroimaging methods have revealed various structural and functional changes that occur in a human brain during a depressive episode. However, we still lack information concerning the extent to which structural and functional changes co-occur in a depressed brain. Furthermore, it is difficult to evaluate from a merely qualitative literature review what regional brain changes in volume and activation are robust across depressed patient samples and consistent across imaging centers.

Methodology and principle findings: This study is a meta-analysis from 10 selected studies published previously. We applied the statistical anatomical/activation likelihood estimate method (ALE) in a total of 176 depressed patients and 175 controls for the MRI modality and in a total of 102 depressed patients and 94 controls for the PET modality to quantitatively identify those brain regions that show concordant alteration in the midst of a depressive episode across imaging modalities and study sites. We find a convergent change in the limbic-cortical brain circuit in depression compared to controls of both Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) data. The specific changes include lower gray matter volumes in the amygdala, the dorsal frontomedian cortex, and the right paracingulate cortex, as well as increases in glucose metabolism in the right subgenual and pregenual anterior cingulate cortices.

Conclusions/significance: Our current findings represent an important first step towards a more focused approach to neuroimaging unipolar depression. The regions identified could serve as a specific region-of-interest-for-disease template for both individual in vivo imaging studies and postmortem histopathologic exploration.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Major depressive disorder (MDD) is the most common psychiatric disorder, defined as a period of at least two weeks of sustained depressed mood and/or anhedonia (Kessler et al., 2005). With a lifetime prevalence for MDD as high as 20% worldwide (Kessler et al., 2005), and treatment resistance contributing significantly to the burden of disease, there is substantial need for a better understanding of the underlying pathophysiology as well as for a better characterization of the structural, and functional neural correlates of depressive symptoms. In the last decade an impressive body of data has been gathered on morphological and functional brain changes characteristic for depression. Above all there is a clear need to link findings derived from different techniques in order to extract the essential comprehensive information to advance the field. To the best of our knowledge, no meta-analysis investigating both change in voxel-based morphometry and alteration in cerebral glucose-metabolism has been conducted for the unipolar depressed brain thus far.

Meta-analyses are essential for reviewing findings from different studies, comparing results in a standardized fashion, and summarizing statistical relations between study characteristics and findings. The anatomical/activation likelihood estimate (ALE) method (Eickhoff et al., 2009; Schröter et al., 2007; Turkeltaub et al., 2002) goes beyond qualitatively pooling results from diverse neuroimaging studies. This method quantitatively models reported brain coordinates and analyzes the locations on where individual peak coordinates converge in a standard brain space. Concordance between studies is identified by creating statistical probability maps as a measure of likelihood of morphological change/activation on a voxel-wise level across the entire set of studies entering the meta-analysis. Of relevance to the current application, ALE has been previously applied with success in neuropsychiatric populations (Delaveau et al., 2011; Fitzgerald et al., 2008; Schröter et al., 2007, 2009).

One recent study has used this method to look at functional activation changes in MDD at rest, after treatment, and during emotion-induction (Fitzgerald et al., 2008), and reported only limited overlap between the different designs. A second study involved adult human subjects (age limit: 19 years or above). Studies reporting only results pre- and post-antidepressive treatment but no healthy control group, or reporting post-medication effects only were excluded. Region-of-interest studies were excluded to enable a data-driven whole-brain approach for the meta-analysis. The literature search, selection of studies according to the inclusion and exclusion criteria, and compilation of coordinates for the contrasts were performed independently by two investigators.

For the PET studies, a total of 13 peak coordinates were reported for changes in brain metabolism. All PET studies reported medication-free MDD patients and contrasted alteration of glucose metabolism in MDD patients versus control subjects. For the VBM studies, a total of 27 peak coordinates were reported for morphological brain changes. Two VBM studies reported medication-free MDD patients whereas five included patients on antidepressant medication. One study reported findings for remitted depressed patients — all other patient samples were acutely depressed when scanned. The morphological changes reported were consistently volume decreases in patients versus controls, thus medication does not seem to introduce a bias towards the direction of the structural change.

2. Methods

According to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines (Moher et al., 2009), we conducted multiple Medline searches to identify all neuroimaging PET and MRI studies of MDD from 2000 to 2009. 529 studies were initially identified. After limiting the results by criteria described below, ten studies were considered eligible to enter the meta-analysis: four FDG-PET studies during rest and six VBM-MRI studies, in a total of 176 depressed patients and 175 controls for the MRI modality and in a total of 102 depressed patients and 94 controls for the PET modality (more detailed information on the included studies can be found in Table 1).

Keywords used in the search were (PET, positron-emission-tomography, OR MRI, Magnetic Resonance Imaging) AND (MDD, major depressive disorder). Additionally, we searched the reference lists of identified articles and reviews. Studies had to fulfill the following criteria: (1) peer-reviewed original research articles, (2) diagnosis according to internationally recognized diagnostic criteria, (3) reported age-matched control group, and (4) results reported as coordinates in a normalized standard stereotactic space (Talairach or Montreal Neurological Institute (MNI) reference system). Studies had to be available in English language, and involve adult human subjects (age limit: 19 years or above). Studies reporting only results pre- and post-antidepressive treatment but no healthy control group, or reporting post-medication effects only were excluded. Region-of-interest studies were excluded to enable a data-driven whole-brain approach for the meta-analysis. The literature search, selection of studies according to the inclusion and exclusion criteria, and compilation of coordinates for the contrasts were performed independently by two investigators.

Brain activation, which potentially bias imaging results, and we limited our selection to studies that reported brain coordinates from whole-brain analyses.
The software GingerALE (http://brainmap.org/ale/index.html) was used for the transformation of all reported coordinates into stereotactic standard Talairach and Tournoux space (Talairach and Tournoux, 1988). Coordinates reported in MNI space were converted to Talairach coordinates. The method we used for our meta-analysis is a variation of Activation Likelihood Estimation published originally by Turkeltaub et al. (2002). An improved version of this method was published by Eickhoff et al. (2009). The improvements include the adaptive variability taking into account the number of subjects in each experiment based on empirical estimates of between-subject variability. The resulting ALE map was thresholded at p < 0.05 (corrected for multiple comparisons by false discovery rate). Statistically significant voxels represent the convergence of the investigated effect across the several studies. We calculated ALE maps separately for FDG-PET and VBM-MRI studies. ALE results were overlaid onto an optimized individual anatomical T1-template (www.brainmap.org/ale/Colin1.1.nii) and cluster centers were anatomically located in Mango (http://ric.uthscsa.edu/mango), a neuroimage viewing tool developed by Lancaster and Martinez (Lancaster et al., 2010).

3. Results

As illustrated in Fig. 1 we found significant decreases in morphological volumes within the corticolimbic circuit, a network relevant to MDD, including left amygdala (cluster-size: 744 mm³, center: x: −13.93, y: −2.93, z: −10.99, with a maximum ALE value of 0.0028), left dorsal frontomedian cortex (BA 8, cluster-size: 480 mm³, center: x: −1.01, y: 24.01, z: 47.99,

Table 1
Studies included in meta-analysis.

<table>
<thead>
<tr>
<th>Study</th>
<th>Disorder</th>
<th>Sample size subjects vs controls</th>
<th>Mean age ± SD</th>
<th>Mean depression score ± SD</th>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zou et al., Biol Psych, 2010 (Zou et al., 2010).</td>
<td>Major depressive disorder (MDD), unipolar</td>
<td>23 vs 23</td>
<td>31 ± 10 vs 37 ± 13</td>
<td>HDRS*: 24 ± 4</td>
<td>Medication naive</td>
</tr>
<tr>
<td>Bergouignan et al., Neuroimage, 2009 (Bergouignan et al., 2009).</td>
<td>Major depressive disorder (MDD), unipolar</td>
<td>21 vs 21</td>
<td>33 ± 10 vs 26 ± 8</td>
<td>BDI*: 19 ± 5, HDRS*: 29 ± 7</td>
<td>Antidepressant therapy, no specific information</td>
</tr>
<tr>
<td>Frodl et al., Mol Psych, 2008 (Frodl et al., 2008).</td>
<td>Major Depressive Disorder (MDD), unipolar</td>
<td>77 vs 77</td>
<td>43 ± 12 vs 41 ± 12</td>
<td>HDRS*: 23 ± 6</td>
<td>16 medication free, others: SSRIs, tricyclic antidepressants and others</td>
</tr>
<tr>
<td>Kim et al., Psych Res, 2008 (Kim et al., 2008).</td>
<td>Major Depressive Disorder (MDD), unipolar</td>
<td>22 vs 25</td>
<td>39 ± 10 vs 35 ± 11</td>
<td>BDI*: 22 ± 14</td>
<td>10 on psychotropic medication</td>
</tr>
<tr>
<td>Yuan et al., Biol Psychiatry, 2008 (Yuan et al., 2008).</td>
<td>Remitted geriatric depression, unipolar</td>
<td>19 vs 16</td>
<td>67 ± 7 vs 68 ± 4</td>
<td>HDRS*: 3 ± 2</td>
<td>Medication free for 3 months</td>
</tr>
<tr>
<td>Tang et al., Psych Res, 2007 (Tang et al., 2007).</td>
<td>Major Depressive Disorder (MDD), unipolar</td>
<td>14 vs 13</td>
<td>30 ± 7 vs 30 ± 7</td>
<td>HDRS* ≥ 18</td>
<td>Medication naive</td>
</tr>
</tbody>
</table>

Glucose utilization (18F-FDG-PET) studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Disorder</th>
<th>Sample size</th>
<th>Mean score ± SD</th>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saxena et al., Biol Psych, 2001 (Saxena et al., 2001).</td>
<td>Major depressive disorder (MDD), unipolar</td>
<td>27 vs 17</td>
<td>38 ± 11 vs 33 ± 12</td>
<td>HDRS*: 21 ± 5</td>
</tr>
<tr>
<td>Kimbrell et al., Biol Psych, 2002 (Kimbrell et al., 2002).</td>
<td>Major depressive disorder (MDD), unipolar</td>
<td>27 vs 17</td>
<td>43 ± 13 vs 43 ± 13</td>
<td>HDRS*: 17 ± 8</td>
</tr>
<tr>
<td>Brody et al., Arch Gen Psy, 2001 (Brody et al., 2001).</td>
<td>Major depressive disorder (MDD), unipolar</td>
<td>24 vs 16</td>
<td>39 ± 11 vs 36 ± 18</td>
<td>HDRS*: 19 ± 5</td>
</tr>
<tr>
<td>Kennedy et al., Am J Psychiatry, 2001 (Kennedy et al., 2001).</td>
<td>Major depressive disorder (MDD), unipolar</td>
<td>13 vs 24</td>
<td>37 ± 9 vs 32 ± 7</td>
<td>HDRS*: 22 ± 4</td>
</tr>
</tbody>
</table>

MRI: Magnetic Resonance Imaging; 18F-FDG-PET: 18F-fluorodeoxyglucose positron emission tomography.

* HDRS: Hamilton Depression Score.

** BDI: Beck Depression Inventory.

* MADRS: Montgomery and Asberg Depression Rating Scale.
with a maximum ALE value of 0.0025), and right paracingulate cortex (BA 9, BA 32; cluster size: 360 mm\(^3\), center: x: 1.45, y: 32.17, z: 32.53, with a maximum ALE value of 0.0018). No brain regions were identified which showed gray matter increases in MDD.

Additionally, we observed increases in glucose metabolism in MDD in the right subgenual and pregenual anterior cingulate cortices (cluster sizes: 80 mm\(^3\): sACC, BA 25, center: x: 11.82, y: 20.53, z: −4, with a maximum ALE value of 0.0013 and BA32, center: x: 8.18, y: 35.47, z: −4, with a maximum ALE value of 0.0013) as can be viewed in Table 2.

4. Discussion

In summary, our results identify regions within the limbic-cortical circuit that in MDD are consistently affected by decreases in gray matter volume and changes in glucose metabolism during rest. The consistent decrease in amygdala volume we observe is in line with evidence from specific region-of-interest analysis of the amygdala in unmedicated MDD-patients (Hamilton et al., 2008) and complemented by findings in postmortem brains of patients who had suffered from unipolar depression (Altshuler et al., 2010; Bowley et al.,
independent of recurrence of mood-symptoms. The authors in this data set the abnormalities in glucose metabolism were interestingly shown to result in increased depression (Vogt, 2005), and has been implicated in MDD (Schroeter et al., 2008, 2010). The overall in-vivo human data investigating amygdala-morphology in unipolar depression has yielded conflicting results thus far. The data from studies on acutely depressed patients versus healthy controls show both increased (Frodll et al., 2002, 2003; Lange and Irle, 2004; van Eijndhoven et al., 2009; Weniger et al., 2006), and reduced (Frodll et al., 2008; Hastings et al., 2004; Tang et al., 2007) amygdala volumes. A hypothesis that could potentially consolidate these heterogeneous findings builds upon data that shows amygdala volumetric enlargements in a sample of first episode versus recurrent MDD patients (Frodll et al., 2002) and takes into account the trend for chronic depression or multiple depressive episodes to be associated with gray matter loss of the amygdala (Hamilton et al., 2008; Lorenzetti et al., 2009; Sheline et al., 1998) thereby supporting the concept that volumetric alterations of the amygdala in unipolar MDD could be interpreted as state related. A second interesting result from our analysis is the glucose-hypermetabolism found in the sACC of unmedicated depressed patients at rest. This brain region has mainly been associated with sadness (Vogt, 2005), and has been implicated in MDD previously (Drevets et al., 1992) but with somewhat inconsistent observations: While most reports describe a correlation of symptom severity with increased glucose utilization in the sACC (Bench et al., 1993; Drevets et al., 1999; Mayberg et al., 1997; Osuch et al., 2000), there is some evidence describing an inverse relationship of functional glucose hypometabolism in the sACC with depression scores, reviewed by Price and Drevets (2010). One possible way to consolidate those differences would be to understand the increase in glucose-metabolism in this brain region as an initial compensatory mechanism that occurs during the beginning of the disease and in an unmedicated state. This concept is supported by studies that report increases in perfusion in this region when inducing sadness in healthy controls (Lioiiti et al., 2002). Tryptophan depletion in patients with remitted depression has also been shown to result in increased metabolism in the sACC (Neumeister et al., 2004), interestingly in this data set the abnormalities in glucose metabolism were independent of recurrence of mood-symptoms. The authors suggest that this finding points toward a trait abnormality in the pathogenesis of MDD that can be unmasked by tryptophan depletion. sACC-hypermetabolism has also been discussed as a potential predictor of treatment response as there is substantial evidence showing the increase in glucose utilization in this region to be reversible with response to antidepressants (Mayberg et al., 1997, 2000).

As glucose metabolism pattern in the sACC is also affected according to medication, and response to treatment, a more heterogenous pattern in glucose-utilization depending upon the progression of the disease is expected to contribute to the challenge of consolidating these findings from different study designs. Thus, more studies addressing this question in a homogenous population of unipolar depressed patients in a longitudinal design are warranted.

The peak in regional metabolism in the sACC is particularly interesting to discuss in light of the revealed morphometric findings in the amygdala: using advanced gray matter parcellation methods based on tractography (Anwander et al., 2007; Johansen-Berg et al., 2004) anatomical connectivity between the sACC and the amygdala has previously been investigated in the human brain in vivo (Johansen-Berg et al., 2008). The authors found anatomical connections between the sACC and the amygdala (Johansen-Berg et al., 2008), results that are complemented by the clusters identified in our quantitative meta-analysis, as well as in a path-modeling meta-analysis (Seminowicz et al., 2004). One plausible explanation integrating findings from both imaging modalities suggests that a decrease in gray matter volume in the amygdala is compensated by an increased glucose-metabolism in the sACC. This modulation might be viewed as the brain's adaptive compensatory reaction at the beginning of a depressive episode; which, when continued for a prolonged period, could induce neuroplastic changes in amygdala-volume. To adequately explore these assumptions, standardized and well-controlled longitudinal studies applying both FDG-PET and VBM-MRI in MDD patients are needed.

Several limitations need to be considered in the interpretation of these results. Firstly, only a small number of studies have examined brain activation using FDG-PET at rest or changes in gray matter volume using MRI voxel-based morphometry in homogenous patient samples and performed analysis on a whole-brain level reporting coordinates in standard space. While it would be preferable to include a larger number of studies, we believe that it is important to apply consistent criteria for the inclusion of studies in such a quantitative review to obtain truly disease-specific results that capture the essential neural correlate characteristics for.

Table 2

Overview of ALE (anatomical likelihood estimate) analysis in human depressed versus healthy brains: Voxel Based Morphometric (VBM) Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) studies in MDD (major depressive disorder) during rest.

<table>
<thead>
<tr>
<th>Region</th>
<th>Hemisphere</th>
<th>BA (Brodman area)</th>
<th>Volume (mm3)</th>
<th>Weighted center (x, y, z)a</th>
<th>Max ALE value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas of decreased volume in patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsal frontomedian cortex</td>
<td>L</td>
<td>8</td>
<td>480</td>
<td>−1.01</td>
<td>24.01</td>
</tr>
<tr>
<td>Paracingulate cortex</td>
<td>R</td>
<td>9, 32</td>
<td>360</td>
<td>1.45</td>
<td>32.17</td>
</tr>
<tr>
<td>Amygdala</td>
<td>L</td>
<td></td>
<td>744</td>
<td>−13.93</td>
<td>−2.93</td>
</tr>
<tr>
<td>Areas of increased metabolism in patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregenual anterior cingulate cortex</td>
<td>R</td>
<td>32</td>
<td>80</td>
<td>8.18</td>
<td>35.47</td>
</tr>
<tr>
<td>Subgenual anterior cingulate cortex</td>
<td>R</td>
<td>25</td>
<td>80</td>
<td>11.82</td>
<td>20.53</td>
</tr>
</tbody>
</table>

a Coordinates in Talairach Atlas space.
the phenotype of a depressive episode. We acknowledge the pilot character of our data-set and view this study as a first step towards a systematic quantification of the brain changes in the midst of a depressive episode.

Partial volume effects (PVE) could confound the findings of increased activity in brain regions that are smaller than two times the full-width-half-maximum (FWHM) of the PET camera used for the glucose-utilization studies (Rousset et al., 1998). The sACC is such a small brain region and PVE could cause spill-over effects. However, PVE would rather be expected to result in underestimating glucose-metabolism in the ACC (Drevets et al., 2008). Additionally, studies exploring the effects of successful antidepressive treatment including pharmacologic intervention (Mayberg et al., 2000), psychotherapy (Goldapple et al., 2004), deep brain stimulation (DBS) (Mayberg et al., 2005), and electroconvulsive therapy (ECT) (Nobler et al., 2001) have demonstrated the increase in brain metabolism in this region to be reversible. These results argue for an actual increase in glucose metabolism in this region in an unmedicated state of the disease.

In conclusion, our data involving a large cohort of a homogenous unipolar depressed patient population provide a compelling first quantitative framework for a dysfunctional sACC-amygdala circuit that has been discussed in the pathophysiology of MDD. Future studies are warranted that are based on the novel statistical ALE method to generate a region-of-interest-for-disease template for unipolar depression.

Role of funding source

This work was supported by project and salary support from the Alexander von Humboldt Foundation (AvH) fellowship award to Dr. Julia Sacher, the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001, research grant to Dr. Jane Neumann, and the Leipzig Research Center for Civilization Diseases at the University of Leipzig (LIFE) research grant funded by means of the European Union, the European Regional Development Fund (ERFD) and the Free State of Saxony within the framework of the excellence initiative to Dr. Matthias I. Schroeter and Dr. Arno Villringer. AvH, BMBF and LIFE had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. None of the material in the present manuscript is submitted for publication or has been published elsewhere.

Conflict of interest

None.

Acknowledgments

This research received project and salary support from the Alexander von Humboldt Foundation (AvH), fellowship award to JS, the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001, research grant to JN, the Leipzig Research Center for Civilization Diseases at the University of Leipzig (LIFE) research grant funded by means of the European Union, the European Regional Development Fund (ERFD) and the Free State of Saxony within the framework of the excellence initiative to AV and MS. We would like to thank Dr. Daniel Margulies for comments and discussion.

References

